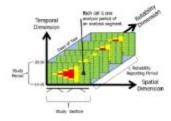


Traffic Congestion and Bottlenecks

Identification, Diagnosis, Solutions

U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION

Workshop Overview


Congestion and Bottlenecks

Identification, Diagnosis, and Solutions Workshop

Participant Workbook

Presented By Federal Highway Administration

ACKNOWLEDGMENTS

This workshop on congestion and bottlenecks is sponsored by the Federal Highway Administration. Thank you for your participation in the course. An evaluation form is included within this workbook, to obtain your feedback. Please forward any additional comments to:

Project Leader Contact Information:							
Joe Bared	joe.bared@dot.gov	(202) 493-3314					
Principal Investigator Contact Information:							
David Hale	david.k.hale@leidos.com	(202) 493-3296					

Workshop Overview

- Session One (70-90 min)
 - Workshop Overview (David Hale, Leidos)
 - Congestion and Bottleneck Concepts (Neil Spiller, FHWA)
 - Congestion and Bottleneck Identification (David Hale, Leidos)
- Break (15 min)
- Session Two (70-90 min)
 - Congestion Causal Pie Chart (Jiaqi Ma, Leidos)
 - Bottleneck Mitigation Strategies (Joe Bared, FHWA)

Workshop Overview

** 1			
Eval	112	\mathbf{t}_{10}	m
T'A PET			

Location:				Date: _		
Items will	l be rated on a	scale rang	ing from 1 to	7 defined	as follows:	
1 Poor	Well Below	3 Below Average	Below	5 Good	6 Very Good	7 Excellent
	Please circle	the numbe	rs below wh	ich reflect	your ratings.	
_			this second a		Var	No
Do sou	FRAN FILMF FILM /					
	feel that the o	0.0760200000201000				
	feel that the d	0.0760200000201000				
		0.0760200000201000				
Comment						
Comment	3:			vorkshop v		
Comment	ision and plan	ining of the	seminar or v	vorkshop v 5	vas:	
Comment 2. Superv 1 Poor Comment	ision and plan	ning of the 3	seminar or v 4 Averag	vorkshop v 5 te	vas: 6	7 Excellent
Comment 2. Superv 1 Poor Comment	is: ision and plan 2 :5:	ning of the 3	seminar or v 4 Averag	vorkshop v 5 te	vas: 6	7 Excellent
2. Superv 1 Poor Comment 3. Overal	ision and plan 2 5: I presentation	aning of the 3	seminar or v 4 Averaj	vorkshop v 5	vas: 6	7 Excellent
Comment 2. Superv 1 Poor Comment	is: ision and plan 2 :5:	ning of the 3	seminar or v 4 Averag	vorkshop v 5 te	vas: 6	7 Excellen

1	2	3	4	5	6	7
Poor			Averag			Excellent
Comments:						
		enerally pres	ented at the	correct leve	l for this g	roup?
Yes	No					
Comments:						
	1.2					
5. The cour	se visual m	aterials were	e:			
	2	3	4	5	6	7
Poor			Avera	e		Excellent
Comments:						
7. Overall v	alue of the	seminar or v	workshop to	you, in your	own word	5.
8 Suggest	one for imp					
8. Suggest	ions for imp					
2	10					
					-	

Traffic Congestion and Bottlenecks

- Self-introductions
 - Name
 - Company
 - Reason for interest in workshop (optional)

Traffic Congestion and Bottlenecks

Identification, Diagnosis, Solutions

U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION

Workshop is Sponsored by

The Saxton Laboratory is located at the

FHWA Turner-Fairbanks Research Center in McLean, VA.

- Comprised of three test beds:
 - Data Resources test bed (DRT),
 - Concepts and Analysis test bed, and
 - Cooperative Vehicle-Highway test bed (CVHT).

FHWA "Localized Bottleneck Reduction" Program

FHWA "Localized Bottleneck Reduction" Program

"Operation Bottleneck"

med

"Uperation Bottleneck. Mercyban MPC (Like Rock region) conducted surveys – online, at public meetings, and via ads in the local messpanes — to solicit public comments in 2005. Local media was enlisted to help promote the effect. Ore 3:000 regions are restored — in too weeb lineary responses attractional deschip-lanes distances, or missing or damaped signs were installed. In the short term, local governments without ordinate to use the information to:

Arkansas

- Consider new or additional traffic signage and signals Enhance signal coordination
- Support minor intersection improvements Improve access-conflict (i.e., access m

construct static version and the underlated (i.e., a construct and stated with review traffic signal operations; corridor studies and/or spot-specific projects will be real response to the most accessible complaints. In other cases, Operation Bottleneck ions on major widenings and other transportat

tent is invaluable in validating concerns and providing an outlet for the public to be I

nfirm to the public that the agency is listening and can provide a response.

Virginia Location - City of Fredericksburg (suburb of W

US 1 at US 17 Busin

Problem - No left turn lanes cause enormous backups

n two major US highways does not currently have left turn la result, each of the four directions has to have its own signal s. Each approach gets about 25% of the green time, and have throughout the day and even on weekends. US 1 production introduction in

Solution - Turn Lanes

At \$22M for just one int Intersection were too close to the n approaches and a few right turn lanes will be ad at once (i.e. NB and SB traffic can move at the ections of traffic to be green at once (i.e. NB and SB traffic can move at the same time, ji prmal intersection). Additionally, raised concrete medians will be added to prohibit left to ion. These si and out or businesses near the intersection. These simple improvements will decrease the aver wait time at the intersection from 234 seconds to just 56 seconds when it is completed in 2 Many people in Fredericksburg hop on 1-95 for a few exits simply to avoid this intersection, and many people in Fredericksburg hop on 1-95 for a few exits simply to avoid this intersection, and

Lessons Learned

Traffic is expected to drama ntersection will not only mitigate current traffic but also accommodate future congestion. Will changes, the average delay in 20 years will be better than the current average delay today.

Washington Statewide "Moving Washington" Program circa 200 Moving Washington is the Governor's 10-year, three-pronged strategy to Combat congestion: 1) Operate Efficiently that which exists; 2) Manage Travel Demand; and 3) Add Capacity, which itself is a three-tiered program uvel Demand; and 3) Add Capacity, which itself is a th i) Tier 1's are immediate, low-cost, operational ii) Tier 2's are medium-cost design-builds, and iii) Tier 3's are major future-planned system upg

Problem - How to Make the Most of a Transportation Budget

Ising a combination of annual and "earmarked" state gas taxes, plus the normal Fed ington uses a system of performance goals and cts. Elected officials are educated to "buy in" to ine projects. Achieving 'maximum inroughput is the defining target for the basis for congestion relief ans. "The annual percent of system that is congested" is defined as the % of lane miles that are

Solution - Use Performance Measures as a Strong Decision Metric There there and reliability are important measures as a different and also to WSOC in determining california protects. The Coli and provide area in a payteen that justice the most productive california protects. The Coli and provide area makes in a payteen that justice the most productive to the coling as general formation provide area makes whether and productive the area of a region of the payteent that makes the most productive that the area of a region of the payteent that makes the payteent that makes the area of a region of the payteent that makes the payteent that makes are also and stargets the mellioner ones. Bland done segments are candidate for The 1 and The 2 paytee (see Solow) and there of general backs are also and the paytee (see Solow) and there are also and the paytee (see Solow) and there of general the makes the paytee (see Solow) and there of general the solow candidate for The 1 and The 2 paytee (see Solow) and there of general backs are also and the paytee (see Solow) and there of general the solow) and the paytee (see Solow) and the solow of the

Lessons Learned

In the 2000's, several "capacity expansion projects" (a WSDOT euph examples of WSDOT's process.

- I-405 Adding either one- or two-lanes where necessary to reduce local congestio
- I-405 'South Bellevue' -- Adding general purpose NB and SB lanes, and a SB HOV lane SR 518 - Adding a third EB lane between I-5 and SeaTac Airport to relieve a long-s
- I-205 at Mill Plain Exit and 112th connector -- create a direct connector ction to NE 112th Ave. from

NB I-205 off-ramp to Mil Plain Blvd. This addressed safety problems too.

Increased use of intelligent technologies – WSOD⁴ into sommittee to investing in IT stra like Active Taffic Management, more cameras and ramp meters, and strategies to manage de (e., van pooling, ank à rides, committee options). The ATM "Smarther Highways' signs on I SR 820, and scon-to-be en the 140 floating bridge, are national models. In the U.S. Minnespolis (RISS) in Jas similar technology, on 1.5%). narter Highways' signs on I-tional models. In the U.S.,

Understanding Merging

Minnesota

· To respond to citizen's questions and identify public perception of ramp metering

Cambridge Systematics was hired by MnDOT to perform the study, inclusive of getting pre-study data and incorporating anystall citizen input and ensuring a transparent process. Five weeks of "before" speed and craft data, ed at, was recorded. The ranges were shut off for a pre-determined "transition" period and then turned back on for five weeks of "after" data gathering.

A 9% reduction in freeway volume; a 22 % increase in travel times; a 26% increase in crashes (even after adjusting for prior seasonal rates)

"all" nor "nothing" was deemed best, but a new, modified approach was adopted

ever meters than before the study were turned back on (location candidacy was

· To involve a citizens advisory board to ensure credibility of the study

Most survey respondents believed traffic had worsened

fter, meters would wait no more than 4 min

Vehicles queued back to city streets will be "released" (m

· After the study: 20% wanted meters left off: 10% want them "returned": 70% want

Location - Minneanolis-St. Paul. Minnesota

Results of 2001 study of Ramp Metering

Effectiveness In September 2000, all 430 m meters were turned off in the Twin Cities region response to a mandate from the MN State Legislat

Lessons Learned / Changes Implemented

Objectives

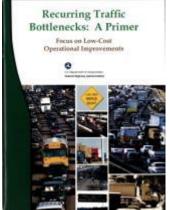
To fully ex

Process and Findings

"Why is recurring traffic like "cat herding?"

What is stopping us from fixing bottlenecks?

ops.fhwa.dot.gov/bn/index.htm


"(Combating) traffic is like combating ever-evolving weather fronts"

Are you a "profiteering" lane merger or an "altruistic" enabler?

Department of Transportation

Case Studies Real-World, Low-Cost!

Florida

Location - Lake City, FL 1-75 at US-90

Problem - Main interchange for city is ro

- U.S. traffic <u>congestion is worsening</u>, and the resulting economic damages are increasing
- A TTI report suggests that vehicle emissions are accelerating economic damages by causing shortterm and long-term health issues (asthma, lung cancer, climate change) on top of traditional mobilitybased economic costs
- There is <u>decreasing reliability of surface</u> <u>transportation</u> because studies show it takes more time to ensure on-time arrival/delivery/reliability.

- Tight budgets for transportation
- Autonomous vehicles are not yet ready
- Agencies must demonstrate return-on-investment
- Mitigation of bottlenecks is a top priority
- This workshop
 - describes new methods of precise congestion identification
 - updates the congestion causal pie chart
 - presents new research on bottleneck mitigation

We will cover:

- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods
- 3. Modernized causes of congestion pie chart
- 4. Featured bottleneck mitigation strategies

1. Congestion and bottleneck concepts

- 2. Congestion and bottleneck identification methods
- 3. Modernized causes of congestion pie chart
- 4. Featured bottleneck mitigation strategies

Difference between . . .

- Nonrecurring
 - When an event occurs (The delay dissipates when the event is removed)
- Recurring
 - "Bottleneck" -- When an operational influence is overwhelmed by traffic overburden (The delay dissipates when the overburden subsides)
 - "Systemic" -- overarching; urban density; pervasive (Can be reduced by reducing demand on automobile trips)

event = weather, accident, incident, work zone

operational influences = on/off ramps, merges, lane drops, curves, traffic signals, junctions, narrow underpasses

A "bottleneck is congestion" but "congestion" is often-times more than just a bottleneck.

Speaking of "Recurring" congestion ---

When too many vehicles compete along all segments of a facility, "congestion" will inevitably result, and is overarching. But when only determinant, subordinate segments of that facility are routinely over taxed, then "operationally recurring bottlenecks" within the facility are said to exist.

Speaking of "Nonrecurring" congestion – the event-based problem is temporary and therefore is usually termed "an incident" and not pervasive "congestion"

"Localized sections of highway where traffic experiences reduced speeds and delays due to recurring operational conditions or nonrecurring traffic-influencing events"

- Characterized by generally low speeds, high delays
- Measured differently by planners, engineers, academics
- All BN's have <u>Duration</u>, <u>Intensity</u>, <u>Variability</u>, <u>Extent</u> (DIVE)
- Congestion occurs pervasively along entire corridor
- *Recurring* bottlenecks repeat at specific locations
 - Cause 40-80%(?) of all congestion
 - Caused by "operational influence" + traffic overburden
 - Can often be mitigated with low-cost solutions

D. I. V. E.

• <u>D</u>uration

□ How long did the event last?

• Intensity

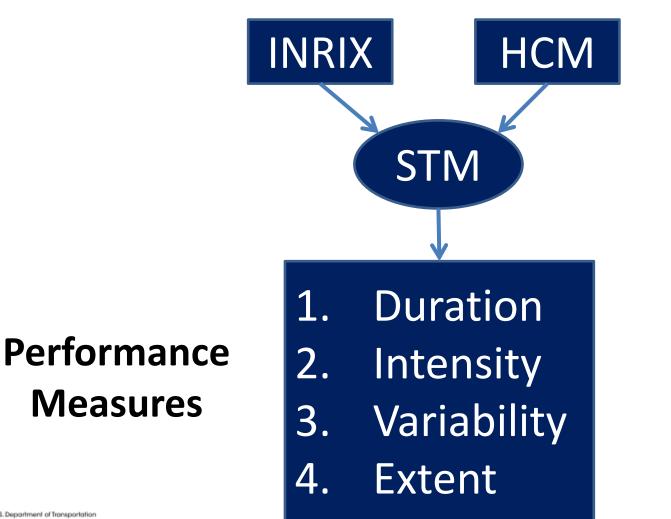
□ Computed as a 2-D percentage of congestion

• Variability

Percentile difference between that day and a "nominal" day

• <u>E</u>xtent

Longest horizontal length of the BN


D. I. V. E. exists regardless of whether recurring or nonrecurring

Spatiotemporal Traffic Matrix (STM)

"Measurements" versus "Models"

Prioritize Locations

Measures

Spatiotemporal Traffic Matrix (STM)

Bottleneck Solutions

- Solutions "playbook"
 - Developed by Texas A&M, Cambridge Systematics
 - Framework with 7 bottleneck categories
 - Each category has many proposed solutions
 - Report appendix (40 pages) details all 70 solutions
- Micro-simulation and benefit-cost analysis
 - 5 promising cost-effective solutions
- Alternative intersections/interchanges (DDI, RCUT, MUT, DLT)
- Additional innovative treatments (Spring 2015)

Bottleneck Solutions

Geometric Fixes	Operational Fixes	Active Traffic Mgmt.	
 widen lengthen grade-separate CF intersections roundabouts auxiliary lanes restripe 	 reversible lanes signal modifications signal redesign frontage system close, combine or relocate a ramp(s) 	 ramp metering use hard shoulders speed harmonization managed lanes variable speed limits queue jumps signal priority 	
Over access man redesign restore lane			

Active Bottleneck

Geometric Challenges				Operational Challenges			
Roadway Specific	Facility Specific	Specific to Interchanges	Intersections /TCD/ITS	Agency Related	Driver Related	Non- motorist Related	
 Design Speed Number of Lanes Lane Width Presence and Type of shoulders Lane drops Lane reduction transition Hz clearance VI clearance VI clearance VI clearance Sun Glare Alignment Hz alignment VI alignment SD Pavement friction/surface Cross Slope Super-elevation Access pts Mid-block Crossing Medians Lighting/Glare 	 Bridges Tunnels and underpass Collector- distributor network 	 Merge and diverge sections Auxiliary lanes Weaving areas On-ramp/off- ramp Acceleration/ deceleration lanes 	 Intersection sight distance Left-turn and Right-turn lane overflow Parking TCD (signal, stop sign, etc.) 	 Managing demand Intersection spacing Interchange spacing Interchange spacing Policy on entry/exit ramp placement Posted speed limit (static/dynamic) Signal timing administration Traffic composition Work zone Roadway closure administration 10.Incident management and clearance 11.Ramp metering 12.Heavy vehicle lane restrictions 	 Bunching vehicle Roadside distraction/rubbe rnecking Non-roadside distractions Unsafe vehicle condition for weather condition Aggressive lane change/weaving Driving unauthorized roadway section Driver performance in work zone Driver performance when involved in an incident 	1. Sub-optimal peds and bicyclist performance	

10. Sub-optimal Driver Performance with regard to emergency vehicles

- a. Description/Definition of the Element
 - i. Drivers may slow down and/or get distracted when they hear emergency vehicle sirens, but cannot locate the direction the vehicle is coming from.
 - Drivers may slow down *below* the design speed limit when they are traveling near a law enforcement vehicle, even if the vehicle is not responding to an emergency.
- b. Theoretical/Empirical Effects: Drivers who do not move over or are slow to move over can slow emergency services.
- c. Existing Solutions
 - i. Emergency Vehicle Preemption (EVP) uses "special control features in traffic signals to provide clear guidance on whether autos should stop (providing a red display) or go (providing a green display) at signalized intersections during the approach of Emergency Vehicles (EVs). In these systems, ITS systems attempt to reduce the "surprise" factor, which may cause drivers to make bad decisions or perform poorly. The benefit of the ITS is the change in the performance of the traffic flow as a result of improved driver behavior. "chvii
 - ii. Larger Shoulders for vehicles to pull over.
 - iii. Properly timed signals that coordinate with emergency vehicles
 - Sirens that can be heard consistently rather than when the vehicle is right behind you.
 - ii. Enforcement and stricter penalties for non-compliance
- d. New Solutions
 - i. Interaction with ITS and personal GPS devices as well as automated vehicle guidance systems to alert drivers ahead of time

- Traffic congestion is worsening

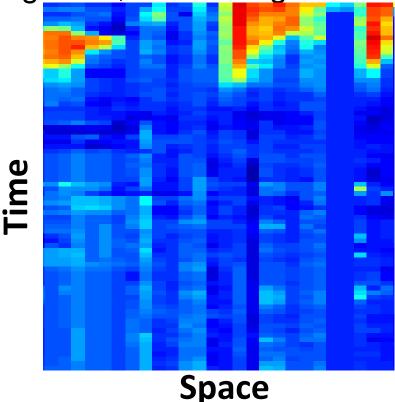
 Economic damage, vehicle emissions, decreasing reliability
- Tight budgets for transportation
- Connected/autonomous vehicles not ready
- Agencies must show return on investment
- Need precise identification of bottlenecks
- Bottleneck mitigation strategies
 - Mobility analysis, benefit-cost analysis

- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods
- 3. Modernized causes of congestion pie chart
- 4. Featured bottleneck mitigation strategies

Congestion and Bottleneck Identification

Identification, Diagnosis, Solutions

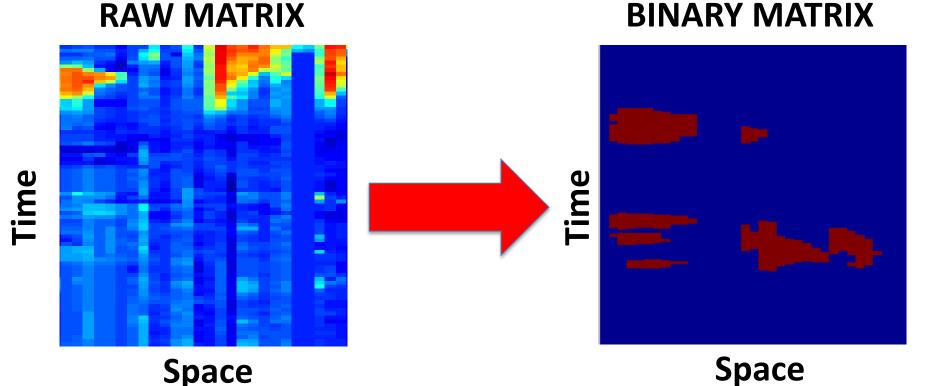
U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION



- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods
- 3. Modernized causes of congestion pie chart
- 4. Featured bottleneck mitigation strategies

Introduction

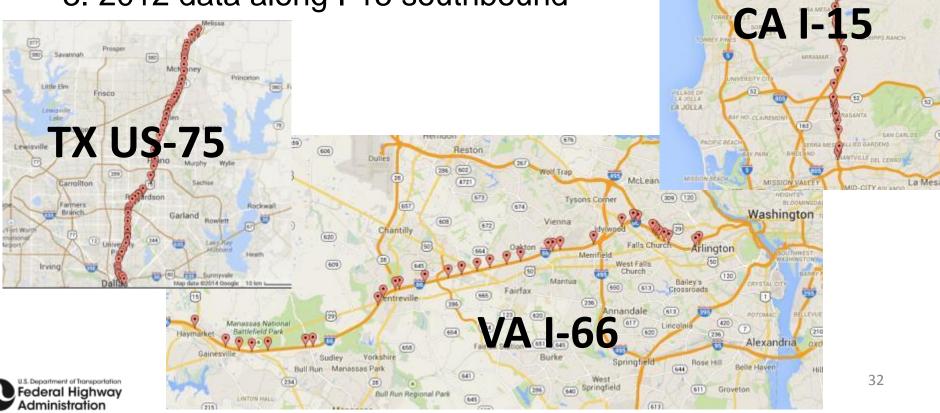
- Space-time matrix (STM) helps identify congestion
- Several colors represent several speed levels
- A simpler (two-color) matrix could identify bottlenecks
 - Blue = uncongested, red = congested



Introduction

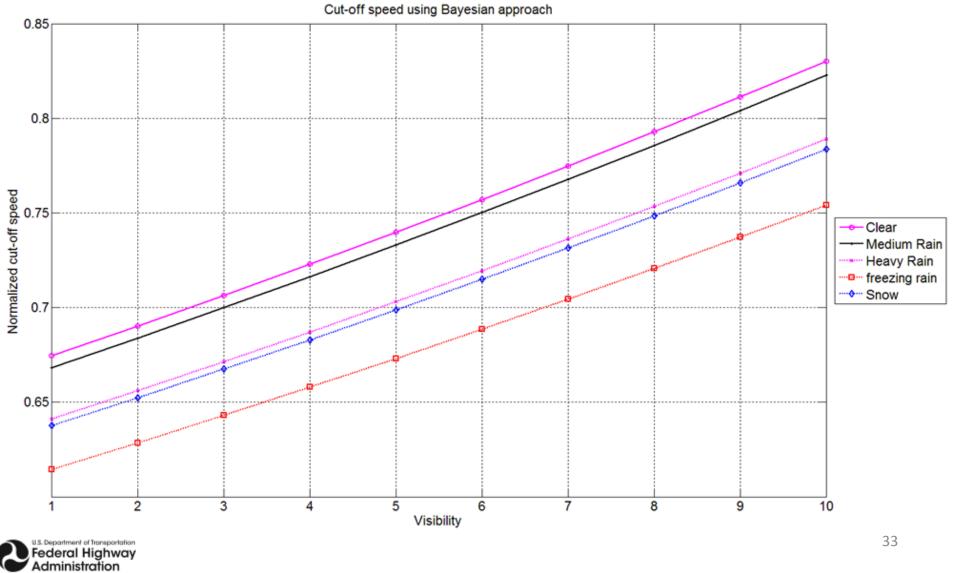
- Cut-off speeds can convert raw matrix to binary matrix
 - Blue = uncongested, red = congested

U.S. Department of Transportation Federal Highway Administration


Factors Affecting Cutoff Speed

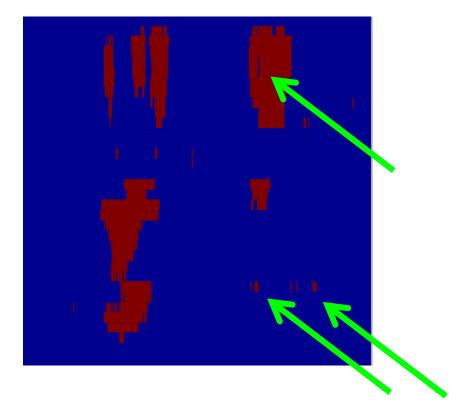
- Arterial vs. Freeway
 - Arterials have lower cut-off speeds
 - 45 mph considered slow on freeway?
 - 25 mph considered slow on arterial?
- Urban vs. suburban
- Free-flow speeds (or posted speed limits)
- Work zones
- Weather conditions, visibility levels
 - VTTI algorithm computes cut-off speeds
 - accounts for weather, visibility, and free-flow speed

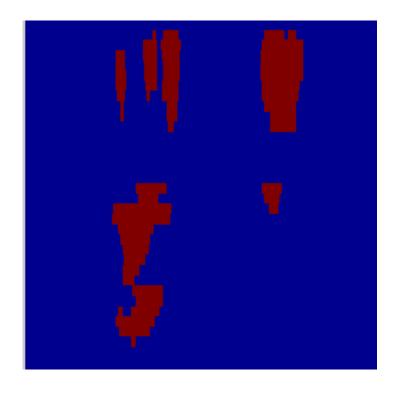
Cutoff Speed Model Development


- Based on INRIX data from VA, CA, and TX
 1. 2011~2013 data along I-66 eastbound
 2. 2012 data along US-75 northbound
 - 3. 2012 data along I-15 southbound

Powar

Cutoff Speed Model

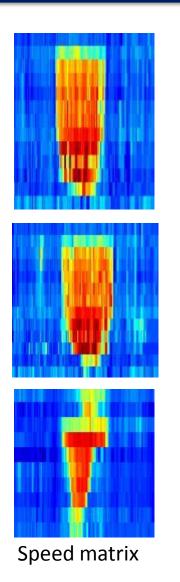


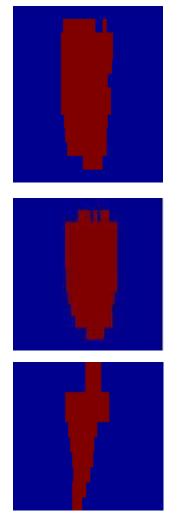


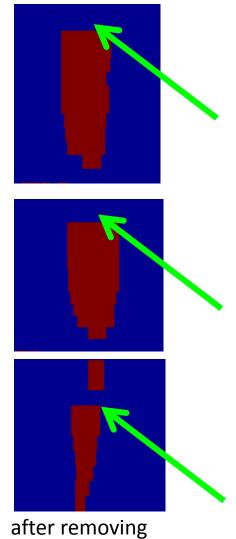
33

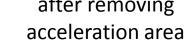
Bottleneck Matrix Processing

- Eliminate "noise"
- Fill in missing data



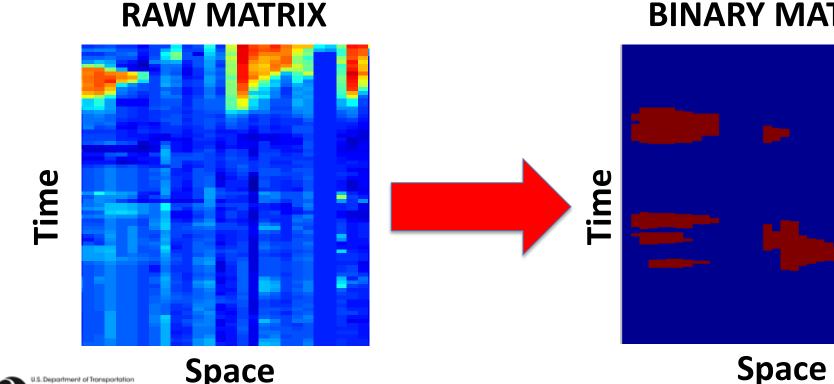



Bottleneck Matrix Processing



before removing acceleration area

- "Delay caused by bottleneck" calculation
 - For segment i at time interval t, need actual speed, and free-flow speed

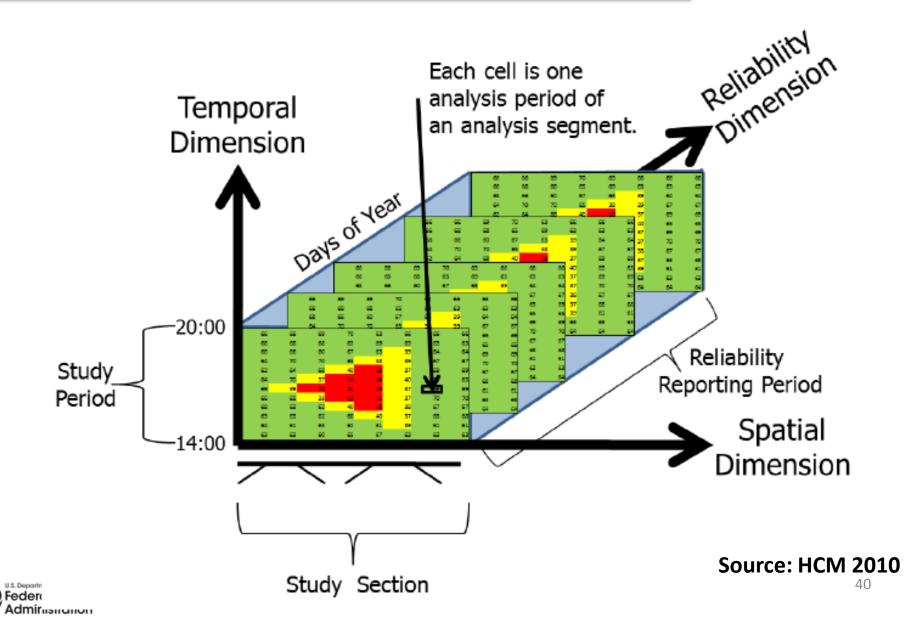

$$d_i(t) = l_i \times q_i(t) \times \left(\frac{1}{u_i(t)} - \frac{1}{u_f}\right) \qquad Total \ Delay = \sum_{\Omega} d_i(t)$$

$$d = \text{delay}, l = \text{length}, q = \text{flow}, u = \text{speed}$$

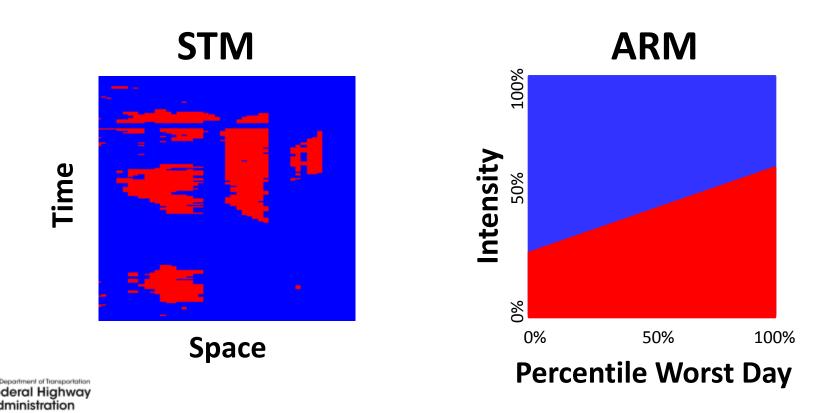
Arterial Congestion Identification

- Some delay caused by signals (not congestion)
- Lower accuracy of INRIX data on arterials
- Wavelet model might help

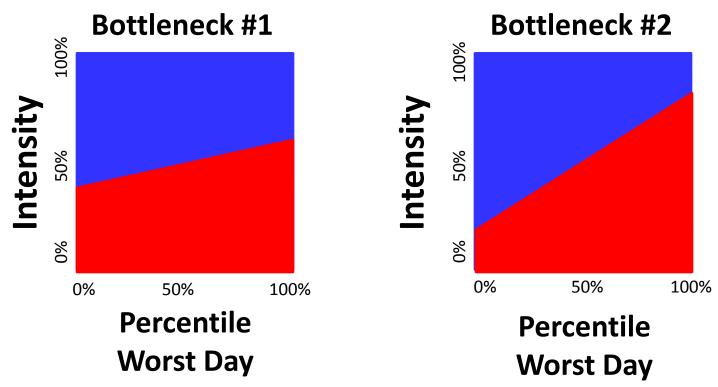
BINARY MATRIX


Software Tool Overview

- VTTI tool features
 - Algorithm to compute bottleneck cut-off speeds
 - Graphical spatiotemporal matrix (STM)
 - Weather and visibility modeling
 - Filters for acceleration areas and "noise"
 - Delay due to bottleneck, shockwave speed
- CBI tool features
 - User-defined bottleneck cut-off speeds
 - Graphical spatiotemporal matrix (STM)
 - Intensity and variability statistics, percentile results
 - Directly imports INRIX files
 - User-friendly GUI (graphical user interface)


Data Import Filters	Import Data Successfully imported 954556 reco
Direction NORTHBOUND -	19:00
Universal Filters (Graphical and Numeric)	
Free-Flow N/A 🗼 🗹	rom File
Cut-Off 70 %	
Hours 🔲 12 am 🔲 4 am 📃 8 am 🔲 12 pm 📝 4 pm [] 8 pm
] 9 pm
Off] 10 pm
] 11 pm portional
Spatiotemporal Matrix Graphical Display Filters Date 2014-09-22 Gridlines Labels	15:00 15:000
Numeric Performance Measure Filters	
Period Daily	Numeric Performance Measures
Centile 85th	Duration 80 minutes at mile 3.5 (out of 6.6)
Months 🗍 Jan 🔽 Apr 🔽 Jul 🔽 Oct	
Feb V May V Aug V Nov	Variability N/A
V Mar V Jun V Sep V Dec	Extent 0.9 miles at interval 28 (out of 48)
Data Files	
Main C:\Users\haledk1\Desktop\My Research\Bottlenecks\I-895-sever	milee\1.995.coven.miles.cov

Spatiotemporal Traffic Matrix (STM)


STM Versus ARM

- STM (Spatiotemporal Traffic State Matrix)
- ARM (Annual Reliability Matrix)

Comparing ARMs

- STM (Spatiotemporal Traffic State Matrix)
- ARM (Annual Reliability Matrix)

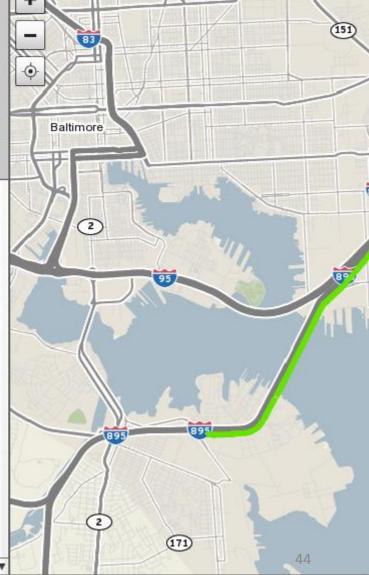
Software Tool Overview

- Downloading INRIX files from RITIS
 - Readings.csv
 - TMC_Identification.csv
- https://vpp.ritis.org/suite/download/

p.ritis.org/suite/ - Windows Internet Explorer								
https://vpp.ritis.org/suite/	✓ Google							
es 🛛 🚖 🙋 Web Slice Gallery 🔻								
nbox - Outlook Web App 💱 AERIS - Dropbox	🏉 http://www.njtpa.org/Pla 🌈 https://vpp.ritis.org/s 🗙 🚺 🎽 🖬 🔻 🔝 👻 🖶 🗮 👻 Page 🔻							

The Vehicle Probe Project Suite

Access to the Vehicle Probe Project Suite is linked to your <u>RITIS</u> account. If you do not have a <u>RITIS</u> account, you can request one <u>here</u>.


In addition, only members of public sector agencies that have signed the <u>Vehicle Probe Data Use Agreement</u> will be granted access to the Vehicle Probe Project Suite. 43

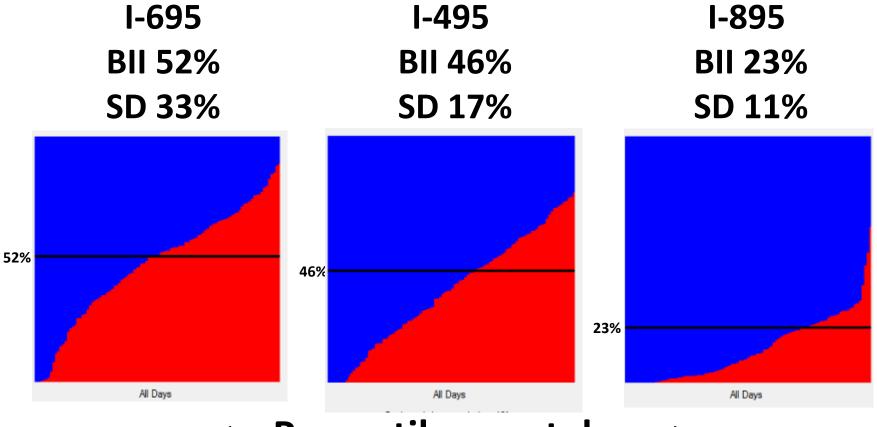
Software Tool Overview

Administration

2. Date Range	TT -
01/01/2014 - 12/31/2014 =	
+ Add another date range	0
3. Days of week	
Sun Mon Tue Wed Thu Fri Sat	Baltim
4. Time of day 🕕	FFF
12 • : 00 • AM • -to- 11 • : 59 • PM •	K
🛉 Add another time of day	
5. Fields 🕕	
☑ Speed	
Travel time Confidence score C-Value	
5. Averaging 📵	5
◯ Don't average	
◯ 15 minutes	
7. Description 🕕	
Northbound I-895	
	La
8. Notification 🕕	
Send me an email when this export is ready	
Submit download request	

Software Tool Demo

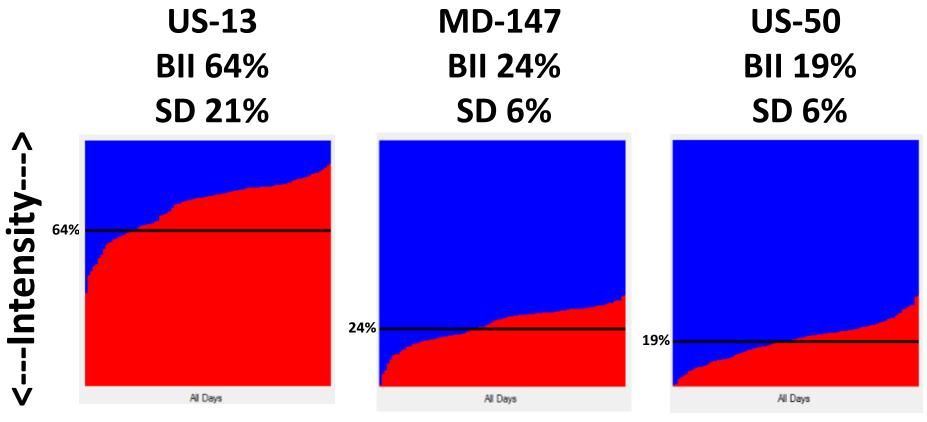
Play demo


Example of Ranking Bottlenecks

- In practice, probably better to compare bottlenecks
- However, our test datasets are full corridors
- Example problem
- PM peak hour analysis only (4-7 PM)
- One year of historical data (2014)
- Bottleneck mode only
- Proportional segments (length matters)
- 25 mph arterial cut-off speed
- 45 mph freeway cut-off speed
- 85th percentile intensity (speed drop tiebreaker)

Ranking Freeway Bottlenecks

- Annual intensity and reliability
 - Bottleneck Intensity Index (BII), Speed Drop (SD)

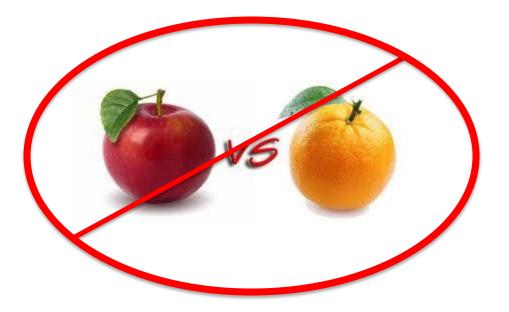

Rederal Highway Administration

---Intensity--->

<---Percentile worst day--->

Ranking Arterial Bottlenecks

- Annual intensity and reliability
 - Bottleneck Intensity Index (BII), Speed Drop (SD)



<---Percentile worst day--->

Ranking Bottlenecks

- When comparing different INRIX datasets...
- They should have the same
 - Interval duration (e.g., 5-minute)
 - Corridor length (sum of all segments)
 - Hours of day, days of week, months of year

- VTTI models and processing methods
 - Import and analyze weather and visibility data
 - Eliminate noise and acceleration areas
 - Fill in missing data
 - Shockwave speed, delay due to bottleneck
- Wavelet model for surface arterials
 - Filter out mandatory signal delay
- Batch processing
 - Automatically load and rank numerous datasets
- New performance measures
 - Travel time index, variance, standard deviation, others?

- Precise assessment of bottlenecks
- Customize your analysis with software
 - Time period of analysis
 - Congestion cut-off speed
 - Percentile results
- Prioritize problem areas
- Justify transportation investments

Preview

- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods

3. Modernized causes of congestion pie chart

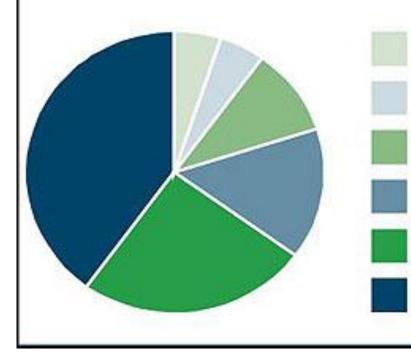
4. Featured bottleneck mitigation strategies

Congestion Pie Chart

Identification, Diagnosis, Solutions

U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION

- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods


3. Modernized causes of congestion pie chart

4. Featured bottleneck mitigation strategies

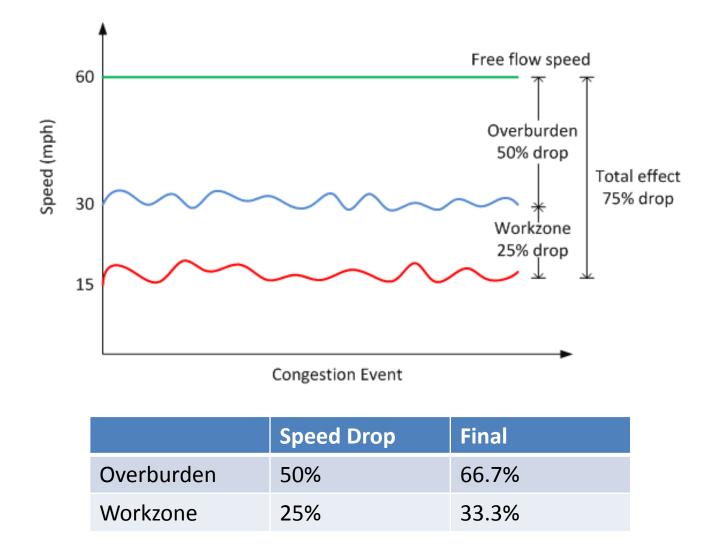
FHWA Report, "Traffic Congestion and Reliability: Linking Solutions to Problems" July 2004

Poor Signal Timing (5%) Special Events/Others (5%) Work Zones (10%) Bad Weather (15%) Traffic Incidents (25%) Bottlenecks (40%)

- Data continuously collected in the field
 - Incident code (0 = no incident, 1 = incident)
 - Weather code (0 = good weather, 1 = bad weather)
 - Workzone code (0 = no active wz, 1 = active wz)
- Congestion identification (using VTTI method)
 - Congestion code (0 = uncongested, 1 = congested)
 - "Speed drop" percentage

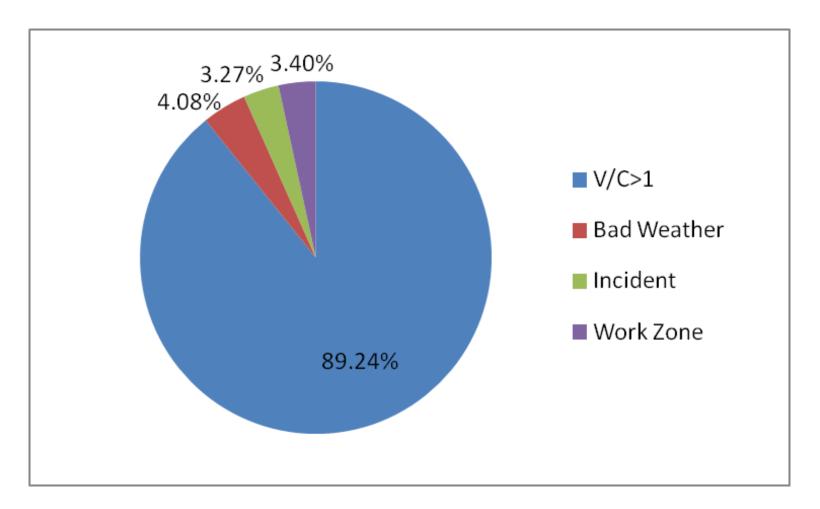
Data-Driven Analysis

- Dilemma of "multiple factors"
- How to measure impact of "overburden"


- v/c > 100%

- Example problem:
 - Free-flow speed = 60 mph, actual speed = 15 mph
 - 75% speed drop
 - Workzone code = 1 (weather & incident codes = 0)
- How much speed drop caused by v/c > 1 (Overburden)?
- How much speed drop caused by workzone?

Data-Driven Analysis



Eastbound I-66 Pie Chart

- Updated, weighted pie chart with spatio-temporal effects

Pie Chart Software

• Open-source tool

• Compatible with Microsoft Access

Congestion Events Congested Road Segments:	
1) Rd: 1 MM: 30 Time: 7:00:00 AM 2) Rd: 1 MM: 30 Time: 7:00:00 AM 3) Rd: 1 MM: 31 Time: 7:00:00 AM 4) Rd: 2 MM: 10 Time: 2:00:00 PM 5) Rd: 2 MM: 20 Time: 4:30:00 PM 6) Rd: 2 MM: 22 Time: 4:30:00 PM 7) Rd: 3 MM: 15 Time: 3:30:00 PM 8) Rd: 3 MM: 15 Time: 4:30:00 PM	Road: 1 Start Mile Marker: 31 End Mile Marker: 31 Date: 1/8/2013 Start Time: 7:00:00 AM End Time: 9:00:00 AM Localized Non-Recurring Non-Repeatable
	Causality: V/C > 1: 48.86% Congestion Cause 1 (weather) (1): 41.29% Congestion Cause 2 (work zone) (1): 9.85%

Surface Arterial Pie Chart

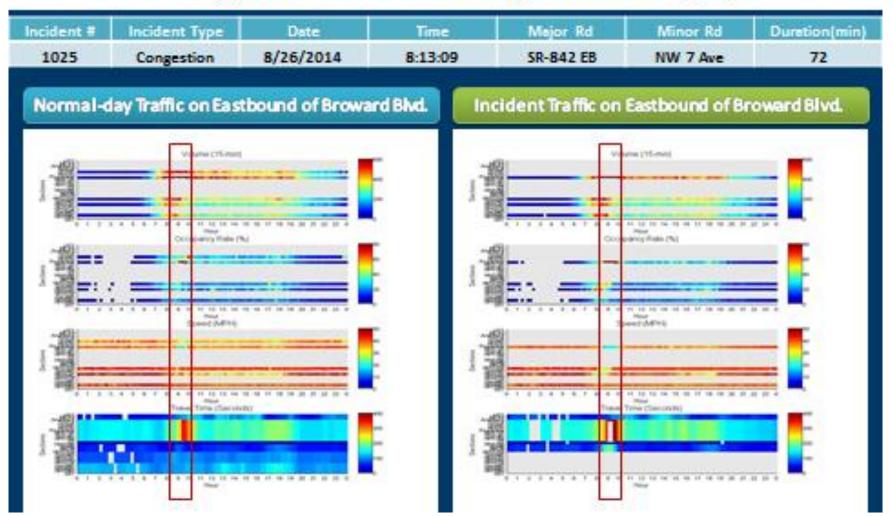
- How difficult to find congestion causes?
 - Arterials much more difficult than freeways
- Complexity of field data sources
 - Not uniform, not standardized
 - Inductive loops, radar, video, ITS devices
- Possible arterial congestion causes
 - Poor signal timing
 - Inadequate geometry
 - Multimodal effects
 - Safety designs
 - Freeway congestion causes (weather, incidents, work zones, overburden)

Arterial Data Analysis

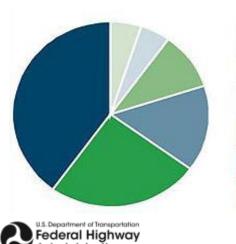
Incidents on Eastbound of Broward Blvd.

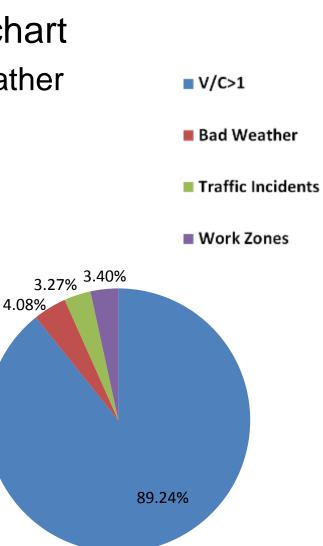
Тура	Date	Time	Road	Location	Duration	Түр
Congection	8/5/2014	8:31:30	58-842 68	US-1	- 26	Conge
Congection	6/7/2014	1:07:24	58-842 68	US-1	23	Road Work -
Congection	0/7/2014	10:52:29	\$8-842.68	US-1	265	Conge
Congection	9/9/2014	7:48:22	58-942.69	US-1	422	Conge
Congestion	8/12/2014	8:42:42	58-842 68	NW 7 Ave	80	Conge
Vehicle Alert	8/12/2014	9:55:05	\$8-942.59	NW 7.Ave	6	Conge
Road Work - Scheduled	8/12/2014	10:16:33	\$8-842.68	Andress Ave	117	Conges
Congection	8/14/2014	7:52:09	\$8-942.59	US-1	124	Conge
Congection	8/18/2014	7:50:51	58-042.00	1-55	10	Cras
Congection	8/08/2004	8:41:22	58-942 59	Andress Ave	60	Conge
Congection	8/05/2014	8:50:22	58-042.00	US-1	115	Conge
Dissibled Vehicle	8/20/2014	8:24:22	58-842 58	1-95	24	Conge
Congection	8/20/2014	9:12:22	58-842.68	NW 7.Ave	21	Conge
Congection	8/21/2014	9:07:09	58-842 68	NW 7 Ave	21	Conges
Road Work - Scheduled	8/21/2014	12:22:12	58-842 68	US-441	48	Cras
Road Work - Scheduled	8/21/2014	17:45:00	58-042.00	US-441	22	Conge
Congection	8/22/2014	8:26:44	58-042.00	1-95	76	Conge
Congestion	8/25/2014	7:42:25	\$9-942.59	Andrews Ave	170	Conge
Disabled Vehicle	8/25/2014	17:16:05	58-942.09	US-1	13	Conge
Congestion	8/26/2014	2:12:03	58-942 59	NW 7 Ave	72	Conge
Congestion	8/27/2014	7:41:22	58-842 58	1-95	15	Conge
Congection	8/27/2014	8:21:10	\$8-642.66	NW 7.Ave	122	Conget Disabled
Congection	8/08/0014	7:25:25	58-942-09	NW 7 Ave	127	
Road Work - Scheduled	8/28/2014	10:18:05	58-642.55	US-441	202	Conge
Disabled Vehicle	8/28/2014	12:38:28	58-642.66	NW 7 Ave	7	Conge
Conception	8/29/2014	7:54:19	58-942.59	1-95	11	Conge Cras
Road Work - Scheduled	8/29/2014	8:55:12	58-942 59	NW 21 Ave	262	Conce
	al and a second					

Incidents on Westbound of Broward Blvd.


Туре	Date	Time	Read	Location	Duration
Congestion	8/1/2014	14:11:29	58-842 WB	1-95	254
Road Work-Scheduled	8/4/2014	11:32:35	\$9-042 WB	1-95	439
Congection	8/4/2014	15:32:52	\$9-042 WB	1-95	145
Congection	8/5/2014	12:31:52	\$9-942 WB	NW 7.Ave	279
Congestion	8/7/2014	8:02:45	\$8-842 WB	NW 7 Ave	22
Congestion	6/7/2014	10:42:52	\$9-942 WB	NW 7.Ave	450
Congection	8/8/2014	11:07:27	\$8-842 WB	NW 7.Ave	246
Congestion	8/11/2014	14:20:53	\$9-942 WB	NW 7.Ave	263
Crach	8/12/2014	\$26.44	\$8-842 WB	NW 7 Ave	22
Congection	8/12/2014	11:44:00	\$9-942 WB	1-95	274
Congection	8/14/2014	15:40:14	\$8-842 WB	1-95	- 90
Congestion	8/14/2014	17:15:24	\$9-942 WB	1-95	24
Congection	8/15/2014	14:02:18	\$8-842 WB	1-95	222
Congestion	8/18/2014	15:06:11	59-842 WB	1-95	202
Crash	8/18/2014	17:11:07	\$9-942 WB	1-95	77
Congection	8/19/2014	17:42:49	58-842 WB	1-95	27
Congestion	8/20/2014	15:12:55	\$8-942 WB	1-25	152
Congection	8/21/2014	15:28:45	58-842 WB	1-95	65
Congestion	8/22/2014	\$201:15	\$9-942 WB	1-95	42
Congection	8/22/2014	15:28:42	58-842 WB	1-95	72
Congestion	8/25/2014	17:02:43	\$9-942 WB	1-95	52
Congection	6/26/2014	15:25:24	58-642 WB	1-95	176
Dissbled Vehicle	8/26/2014	17:12:24	\$9-942 WB	Andrews Ave	17
Congection	8/27/2014	15:22:26	\$8-842 WB	1-95	151
Congestion	8/28/2014	15:45:20	\$9-942 WB	1-95	160
Congestion	8/28/2014	16:44:22	\$8-942 WB	NW 7 Ave	101
Crach	8/28/2014	17:25:02	58-842 WB	1-95	27
Congection	8/25/2014	15:25:29	\$9-942 WB	1-55	147

Arterial Incident Records


August 26 – Congestion (1)



- Data-driven congestion causal pie chart
 - Bigger impact: road geometry, bad weather
 - Smaller impact: incidents, work zones
- Coming soon
 - Surface arterial pie chart
 - Analysis of more freeways

Poor Signal Timing (5%) Special Events/Others (5%) Work Zones (10%) Bad Weather (15%) Traffic Incidents (25%) Bottlenecks (40%)

Preview

- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods
- 3. Modernized causes of congestion pie chart

4. Featured bottleneck mitigation strategies

Bottleneck Mitigation Strategies

Identification, Diagnosis, Solutions

U.S. Department of Transportation FEDERAL HIGHWAY ADMINISTRATION

- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods
- 3. Modernized causes of congestion pie chart

4. Featured bottleneck mitigation strategies

Active Bottleneck

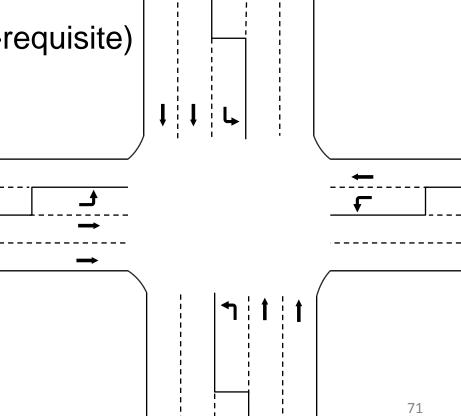
Geometric Challenges				Operational Challenges		
Roadway Specific	Facility Specific	Specific to Interchanges	Intersections /TCD/ITS	Agency Related	Driver Related	Non- motorist Related
 Design Speed Number of Lanes Lane Width Presence and Type of shoulders Lane drops Lane reduction transition Hz clearance VI clearance VI clearance VI clearance Sun Glare Alignment Hz alignment Hz alignment VI alignment SSD Pavement friction/surface Cross Slope Super- elevation Access pts Mid-block Crossing Medians 	 Bridges Tunnels and underpass Collector- distributor network 	 Merge and diverge sections Auxiliary lanes Weaving areas On-ramp/off- ramp Acceleration/ deceleration lanes 	 Intersection sight distance Left-turn and Right-turn lane overflow Parking TCD (signal, stop sign, etc.) 	 Managing demand Intersection spacing Interchange spacing Interchange spacing Policy on entry/exit ramp placement Posted speed limit (static/dynamic) Signal timing administration Traffic composition Work zone Roadway closure administration Incident management and clearance Ramp metering Heavy vehicle lane restrictions 	 Bunching vehicle Roadside distraction/rubbe rnecking Non-roadside distractions Unsafe vehicle condition for weather condition Aggressive lane change/weaving Driving unauthorized roadway section Driver performance in wz Driver performance when involved in an incident 	1. Sub-optimal peds and bicyclist performance

Featured Bottleneck Solutions

1. Dynamic Lane Grouping

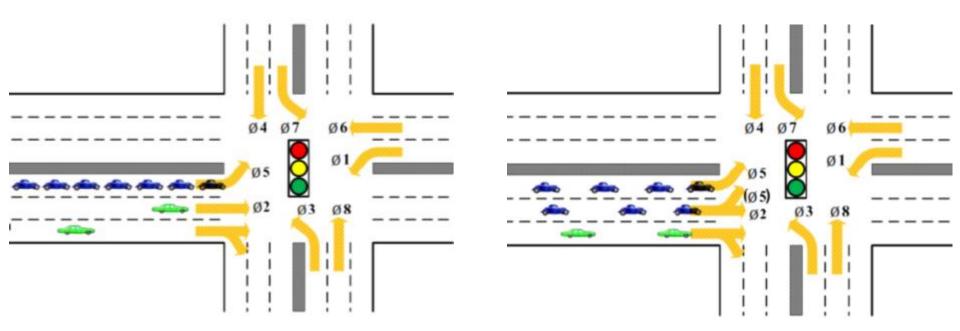
- 2. Dynamic Merge Control
- 3. Acceleration Lane Extension
- 4. Hard Shoulder Running
- 5. Lane Narrowing to Add a Lane
- 6. Alternative Intersections and Interchanges

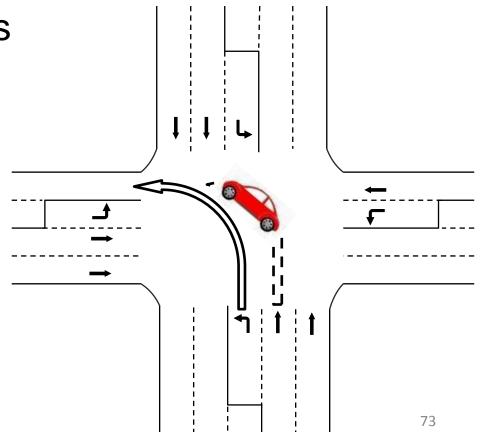
Innovative Solutions (coming soon)



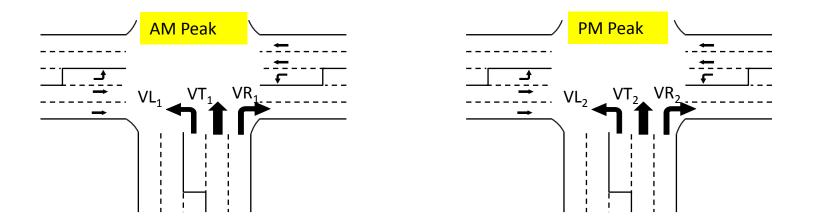
- **1. Dynamic Hard Shoulder Running**
- 2. Contraflow Left-Turn Lanes
- 3. Freeway Merge with Variable Speed Limits
- 4. Signal Optimization via SPSA

Dynamic Lane Grouping (DLG)

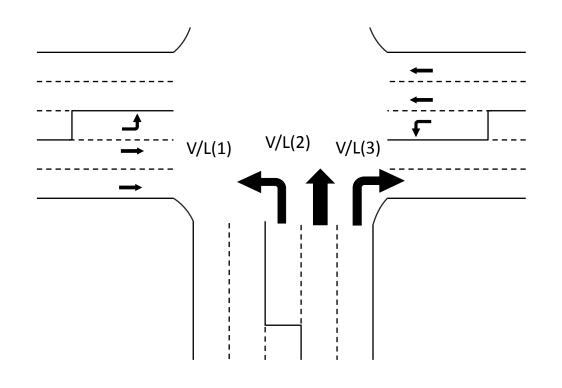

- Dynamically assigns lanes to turning movements
- Scan for good candidates among many intersections
- Four screening criteria
 - Safe turning geometry (pre-requisite)
 - Volume change
 - Volume per lane
 - Degree of saturation

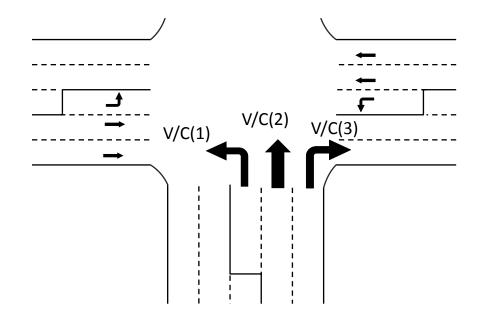

Dynamic Lane Grouping (DLG)

 Visual example: convert middle lane to a left-turn lane, during certain times of the day



- Screening criteria #1: Safe Turning Geometry
- Pre-requisite
- Adequate number of receiving lanes
- At least two through lanes

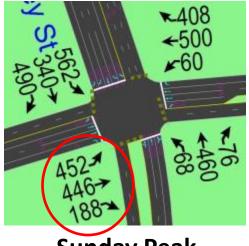

- Screening criteria #2: Volume Change
- Compare AM and PM peak volumes
- LT or RT volumes increase by at least 20%
- TH volumes decrease by at least 20%


- Screening criteria #3: Volume per Lane
- Left-turn or right-turn volume per lane exceeds through volume per lane by at least 50%

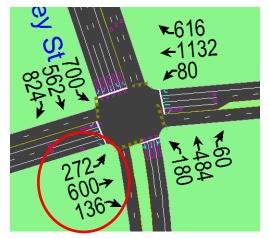
- Screening criteria #4: V/C Ratio
- High left-turn or right-turn V/C (> 70%)
- Low through V/C

 $(<\frac{\# Through \ Lanes - 1}{\# Through \ Lanes})$

- Case study of 17 intersections (along 2 networks in Virginia)
 - TCN network
 - OBN network
- 8 candidate movements (LT and RT) per intersection
- 8 candidate time periods
- 17*8*8 = 1,088 candidates



- Degree of saturation criterion
 - Best identification rate
 - Fewest number of false positives


Network Name	OBN	TCN	ID Rate
# of candidates	448	640	
Volume/Capacity	6(5)	2(2)	87.5%
Volume/Lane	4(1)	42(7)	17.4%
Volume Change	4(2)	12(1)	18.8%

- DLG improvements at Lee Highway @ Nutley Street
- Sunday peak period: switch to dual left turns

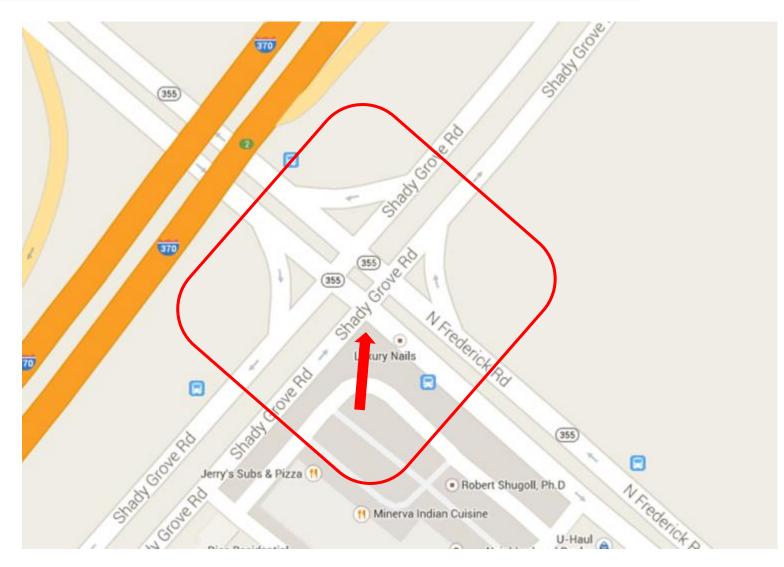
Sunday Peak

Weekday PM Peak

	Volume/Capacity	Volume/Lane
Left-Turn	0.99	452
Through	0.31	223

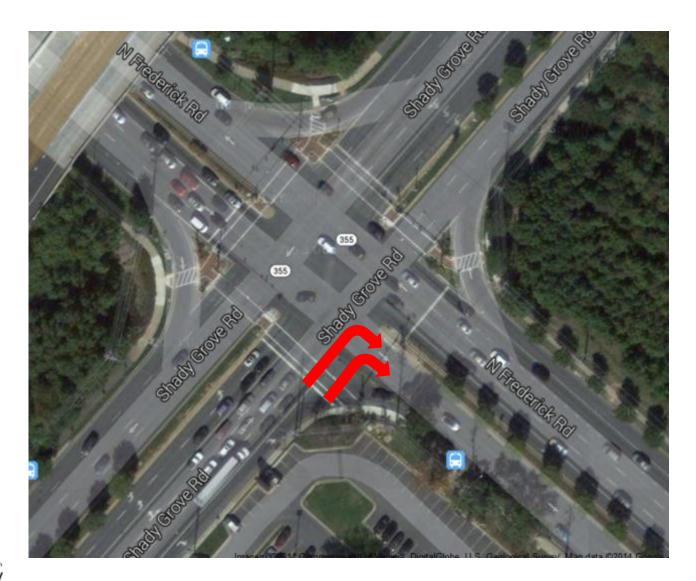
Play before video

	EBL	EBT	EBR	Total
Volume	452	446	188	
Base Delay/Veh (s)	147	25	9	60
DLG Delay/Veh (s)	78	27	9	47



Play after video

	EBL	EBT	EBR	Total
Volume	452	446	188	
Base Delay/Veh (s)	147	25	9	60
DLG Delay/Veh (s)	78	27	9	47



Federal Highway Administration

	Hour		Shady Gro From \		
	Begin	L	т	R	тот
	6:00	119	428	404	951
Morning	7:00	370	477	926	1773
Morning Peak	8:00	445	569	1087	2101
Feak	9:00	350	831	1395	2576
	10:00	478	748	691	1917
	11:00	488	933	743	2164
	12:00	562	963	689	2214
	13:00	567	1096	820	2483
	14:00	701	1236	844	2781
	15:00	660	1070	568	2298
Evening Peak	16:00	1092	1757	495	3344
	17:00	950	1865	678	3493
I Cak	18:00	1030	1862	629	3521

Play DLG in the field

- Benefit-cost analysis based on SHRP2 report
 - Commuter travel time valued at 50% of prevailing wage rate
 - National wage rate of \$21 per hour in the year 2009
- Simplifying assumptions
 - 250 commuting days per year
 - No life-saving benefits or GDP benefits
 - No safety costs or environmental costs

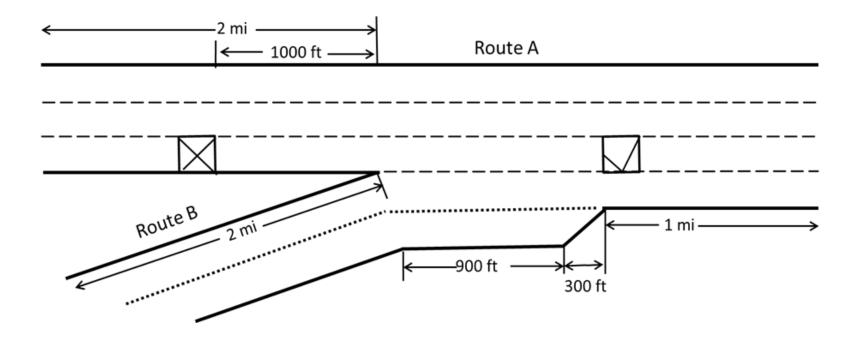
$$\frac{\$21}{hr} \times \frac{1 \text{ wage rate}}{2} \times \frac{1.6 \text{ persons}}{veh} = \frac{\$17}{veh \cdot hr}$$

- Annual benefits between \$68K and \$295K
- Greatest benefits at high-volume intersections
- Benefit-cost ratios between 5:1 and 22:1
- This analysis assumed
 - 15-year lifespan for DMS signs, capital cost of \$125K, O&M costs of \$2K per year, 250 commuting days per year

	<u>Capital Cost</u>	Operating Cost
Dynamic Message Sign	\$47-117K	\$2.4-6K
Dynamic Message Sign Tower	\$25-120K	
Dynamic Message Sign – Portable	\$18-25K	\$1.2-2K

- DLG reduces the gap between supply and demand
- Screening criteria quickly identify candidate locations
- Volume/Capacity was the top screening criterion
 - Few false positives
 - Candidates showed noticeable delay reductions
- Volume Change and Volume/Lane do not require signal data
- Case study results
 - DLG reduced overall intersection delay 15-30% in some cases

Featured Bottleneck Solutions


1. Dynamic Lane Grouping

2. Dynamic Merge Control

- 3. Acceleration Lane Extension
- 4. Hard Shoulder Running
- 5. Lane Narrowing to Add a Lane
- 6. Alternative Intersections and Interchanges

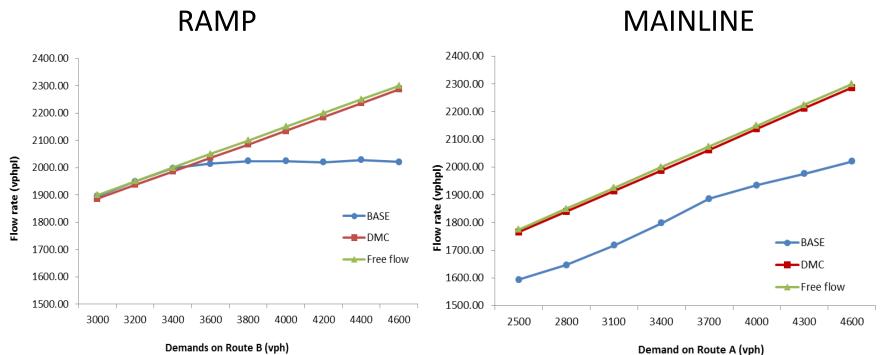
- Dynamic lane closing (mainline or on-ramp)
- Goal is to reduce friction in the merging area

Florida – Lane reconfiguration

Before: FDOT tried a faux work zone to change 3 lanes to 2

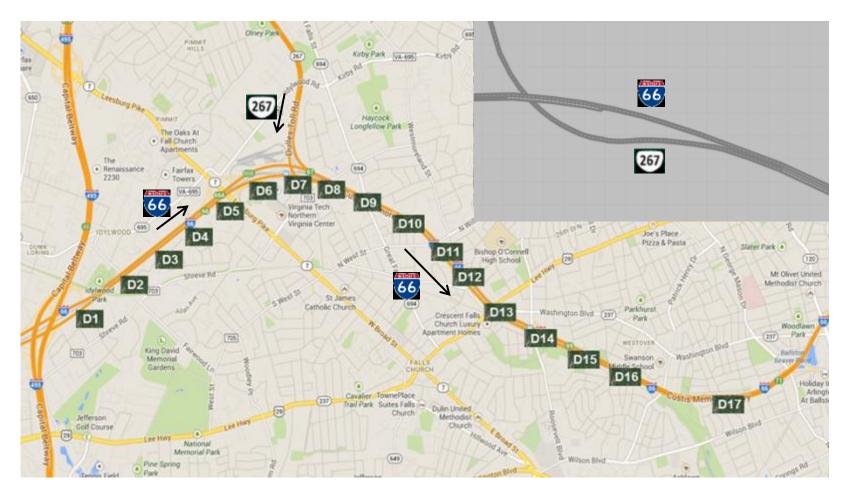
After: the plan worked so well they made it permanent

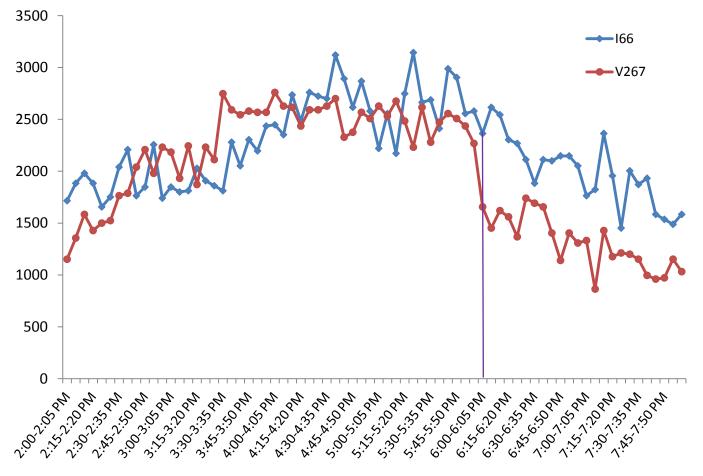
- Source: "Managed Lanes in the Netherlands" by Bert Helleman


- Source: "Managed Lanes in the Netherlands" by Bert Helleman

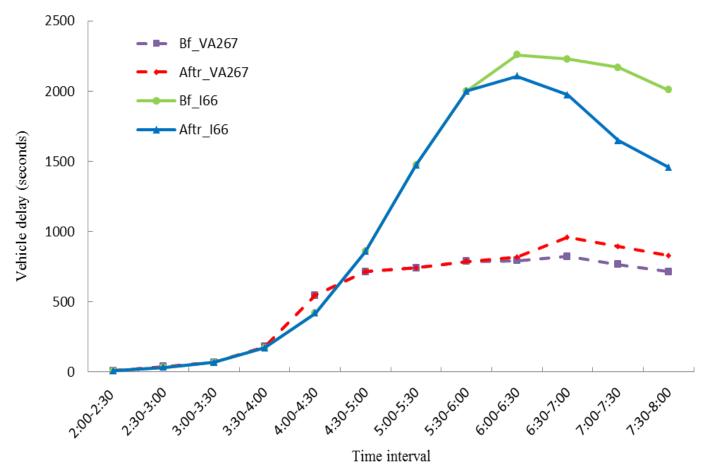
	Evaluation results				
	Red route	Free flow	Without IMC	With IMC	Change %
TO PROVIDE A	mean travel time	4.76	11.03	10.42	- 8%
	mean travel speed	98	41	45	+ 8%
	Vehicle hours of delay	-	1558	1361	- 13%
States of the states	The prove off	1 allon-		The second	A
	Blue route	Free flow	Without IMC	With IMC	Change %
TT VCCCC	mean travel time	2.78	7,07	6.56	- 7%
	mean travel speed	106	42	45	+ 7%
	Vehicle hours of delay	-	1455	1398	- 4%

- Hypothetical network study (3-lane merge with 2-lane)
- DMC substantially improved flows for all demand combinations


- Hypothetical network study
- Without DMC, merge-area capacity constrained by weaving friction



• Real-world network study (Virginia's I-66)



- Real-world network study (Virginia's I-66)

• Real-world network study (Virginia's I-66)

Play video

Play video

- Annual benefits between \$236K and \$1.02M
- Greatest benefits at high-volume on-ramps
- Benefit-cost ratio between 8:1 and 36:1
- This analysis assumed
 - 15-year lifespan for DMS signs, capital cost of \$250K, O&M costs of \$6K per year, 250 commuting days per year

	Capital Cost	Operating Cost
Dynamic Message Sign	\$47-117K	\$2.4-6K
Dynamic Message Sign Tower	\$25-120K	
Dynamic Message Sign – Portable	\$18-25K	\$1.2-2K

- DMC strategy produced benefits at all demand combinations
- Strongest benefits when on-ramp demand reaches 1900 vphpl
- Less weaving friction in the merge area
 - increases capacity
 - delays formation of bottlenecks

Featured Bottleneck Solutions

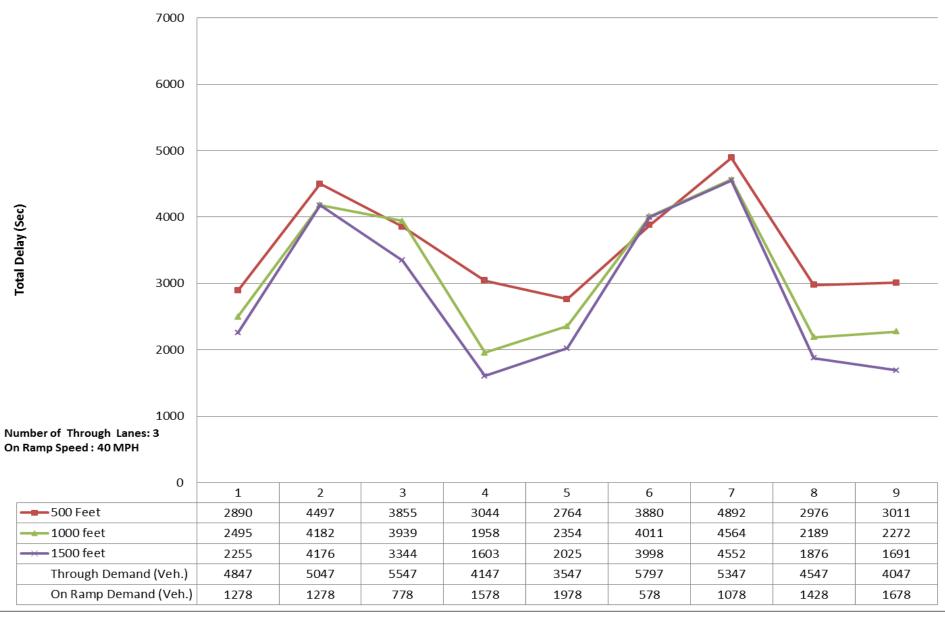

- 1. Dynamic Lane Grouping
- 2. Dynamic Merge Control
- **3. Acceleration Lane Extension**
- 4. Hard Shoulder Running
- 5. Lane Narrowing to Add a Lane
- 6. Alternative Intersections and Interchanges

Extending Acceleration Lanes

- Acceleration lane merging causes severe bottlenecks
- AASHTO guidelines: some acceleration lanes too short
- Paramics simulations: 3-lane and 4-lane corridors
 - increasing from 500 to 1000 feet
 - increasing from 500 to 1500 feet

	Through Lanes	Ramp Speed	Acceleration Length	AASHTO Guideline
No.	(Number)	(Mph)	(Feet)	(Feet)
1	3	40	500	780+300 taper
2	3	40	1000	780+300 taper
3	3	40	1500	780+300 taper
4	3	30	500	1160+300 taper
5	3	30	1000	1160+300 taper
6	3	30	1500	1160+300 taper
7	4	40	500	780+300 taper
8	4	40	1000	780+300 taper
9	4	40	1500	780+300 taper
10	4	30	500	1160+300 taper
11	4	30	1000	1160+300 taper
12	4	30	1500	1160+300 taper

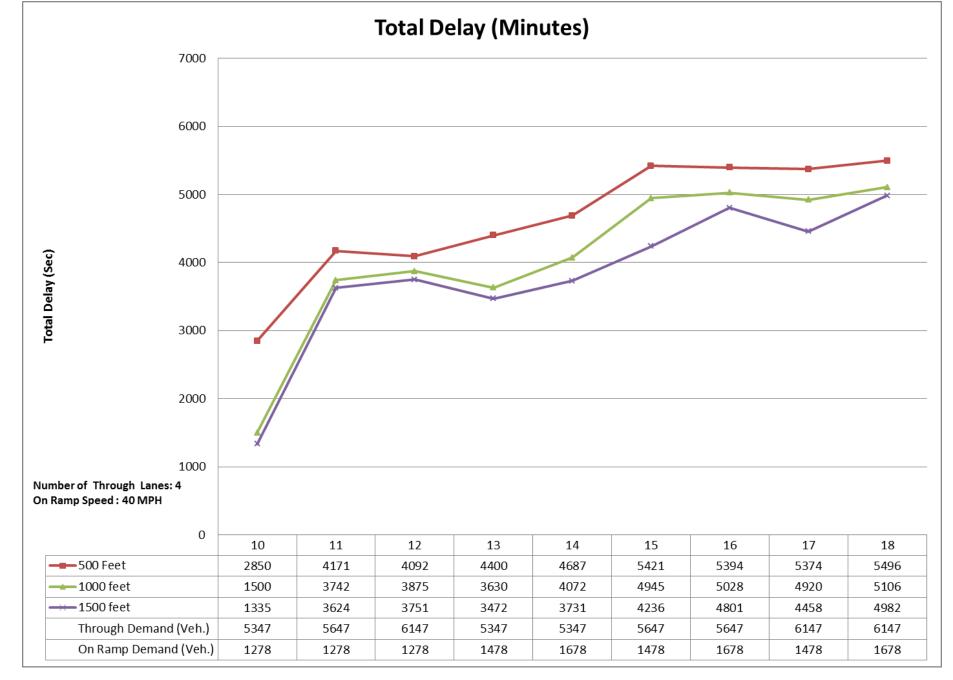
Extending Acceleration Lanes



Scenario No.	Through Demand	ON Ramp Demand
	(Vehicles)	(Vehicles)
1	4847	1278
2	5047	1278
3	5547	778
4	4147	1578
5	3547	1978
6	5797	578
7	5347	1078
8	4547	1428
9	4047	1678

Scenarios for 500, 1000, 1500 ft that include taper length

Total Delay (Minutes)


Total Delay (Sec)

Volume demands (4-lane configuration)

Scenario No.	Through Demand	ON Ramp Demand
	(Vehicles)	(Vehicles)
10	5347	1278
11	5647	1278
12	6147	1278
13	5347	1478
14	5347	1678
15	5647	1478
16	5647	1678
17	6147	1478
18	6147	1678

Benefit-Cost Analysis

- Annual benefits between \$45K and \$79K
- Greatest benefits when on-ramp flow > 1400 veh/hr/ln
- No benefits when on-ramp flow < 800 veh/hr/ln
- Benefit-cost ratios between 1:1.4 and 20:1
- TTI research on acceleration lanes
 - simple shoulder conversion cost between \$50K and \$100K
 - complex retrofits can cost over \$1M
 - Arlington TX spent \$640K to extend ramp/accel lane (2014)

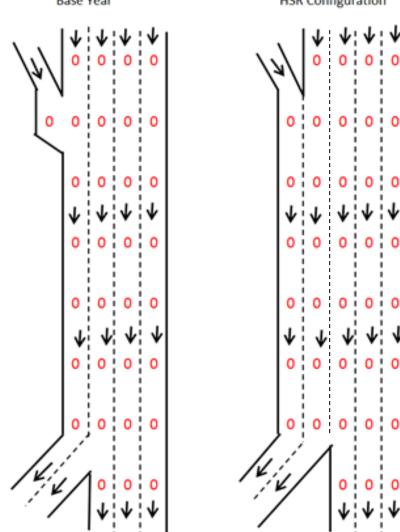
	1000 feet	1500 feet
3-lane, 40 mph	\$ 27,965	\$ 44,965
3-lane, 30 mph	\$ 34,354	\$ 61,058
4-lane, 40 mph	\$ 43,562	\$ 67,717
4-lane, 30 mph	\$ 42,712	\$ 78,838

Summary

- Increasing from 500 to 1000 feet
 reduced delay by 14% (average)
- Increasing from 500 to 1500 feet
 reduced delay by 23% (average)
- Reduced delay up to 36% when on-ramp flow > 1400 veh/hr/ln
- No delay reduction when on-ramp flow < 800 veh/hr/ln

Featured Bottleneck Solutions

- 1. Dynamic Lane Grouping
- 2. Dynamic Merge Control
- 3. Acceleration Lane Extension

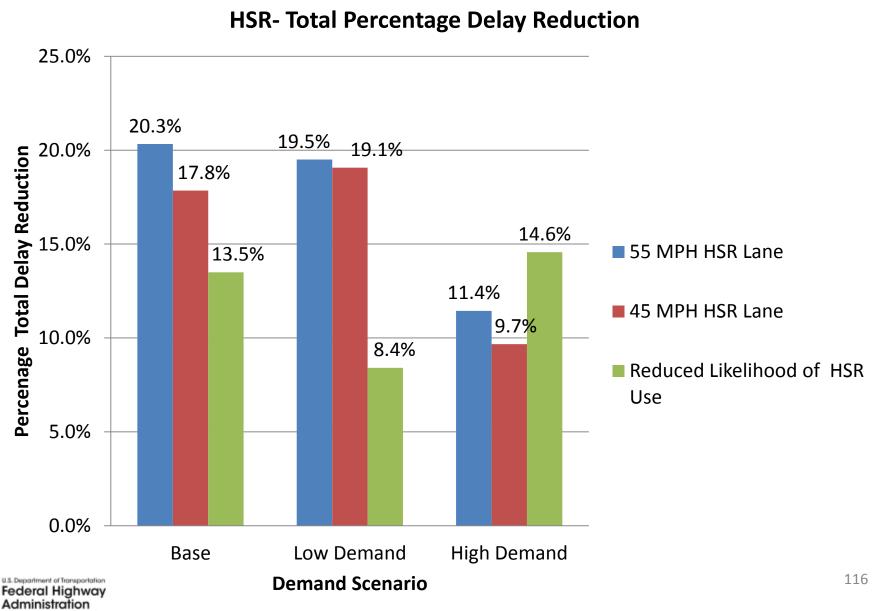

4. Hard Shoulder Running

- 5. Lane Narrowing to Add a Lane
- 6. Alternative Intersections and Interchanges

Hard Shoulder Running (HSR)

 Use of limited hard shoulder running for better merge control
 Base Year
 HSR Configuration

Hard Shoulder Running (HSR)


- Simulation scenarios
 - Demand level (*3)
 - Speed limit and likelihood of use (*3)

Hard Shoulder Running (HSR)

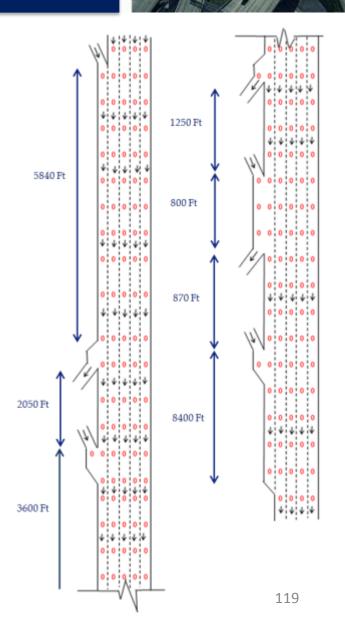
Benefit-Cost Analysis

- Benefit-cost ratios between 1:1 and 21:1
- Assumptions
 - 30-year life, annual O&M \$6-12K, start-up costs \$0.25-1.5M

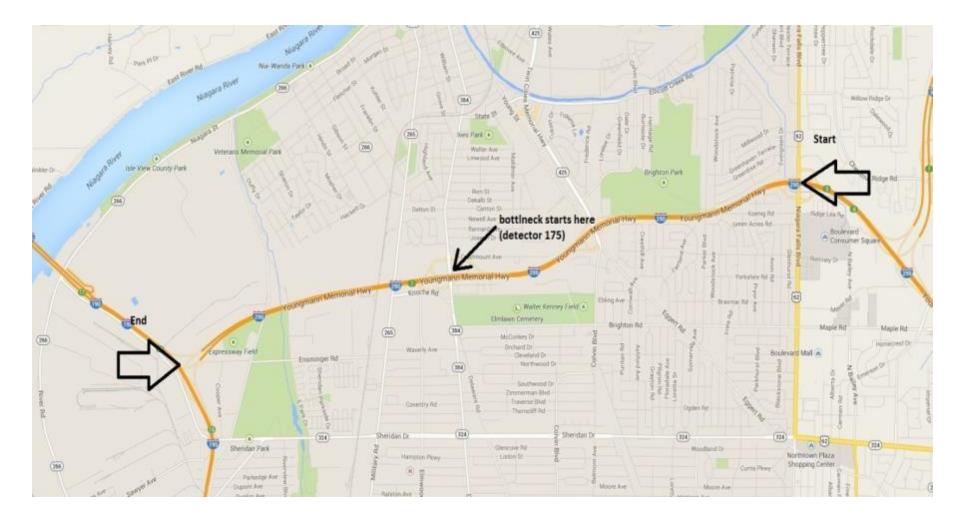
Simulation No.	Demand	HSR Type	Total Delays (Hours)	Annual Savings (\$)
1	Base	No HSR	136.4	
2	Base	55 MPH HSR Lane	108.7	\$353,100
3	Base	45 MPH HSR Lane	112.1	\$309,900
4	Base	Reduced HSR Use	118.0	\$234,600
5	Low	No HSR	96.3	
6	Low	55 MPH HSR Lane	77.5	\$239,700
7	Low	45 MPH HSR Lane	78.0	\$233,400
8	Low	Reduced HSR Use	88.2	\$103,200
9	High	No HSR	224.9	
10	High	55 MPH HSR Lane	199.1	\$329,100
11	High	45 MPH HSR Lane	203.1	\$278,100
12	High	Reduced HSR Use	192.1	\$418,200

Featured Bottleneck Solutions

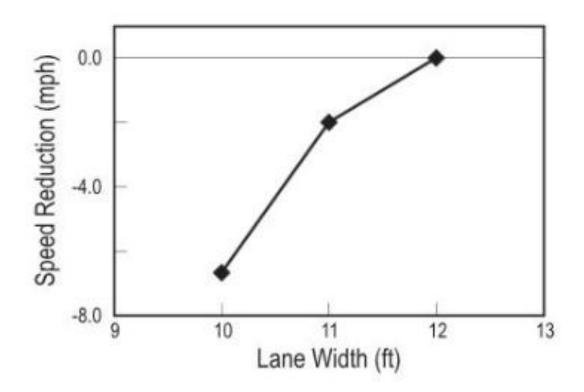
- 1. Dynamic Lane Grouping
- 2. Dynamic Merge Control
- 3. Acceleration Lane Extension
- 4. Hard Shoulder Running


5. Lane Narrowing to Add a Lane

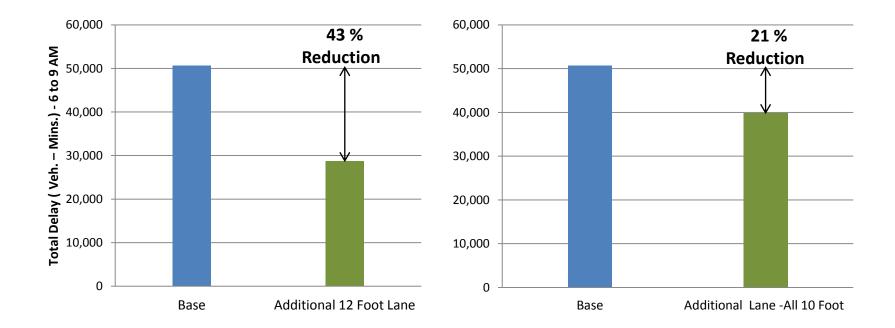
6. Alternative Intersections and Interchanges

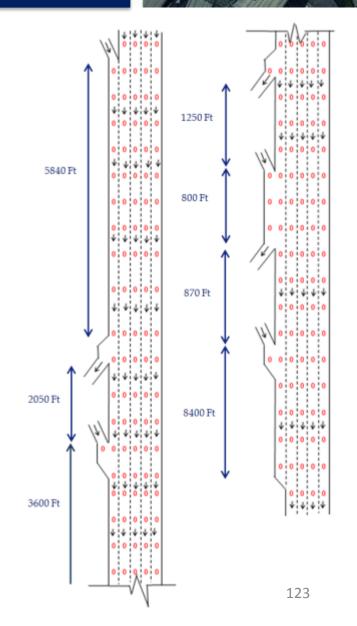

- Reducing lane width to 10'

 often without construction,
 or requisition of additional space
- Compared vs. five 12-foot lanes
 - impact of additional roadway
 - vs. redistributing the existing one



Drivers reduce speed on lanes narrower than 12 feet
 – HCM, TransModeler




Construction of Additional Lane

Low-Cost Alternative

- Benefit-cost ratio of roughly 20:1
- Assumptions
 - 30-year life
 - annual O&M of \$26K per mile
 - start-up cost of \$2M

Featured Bottleneck Solutions

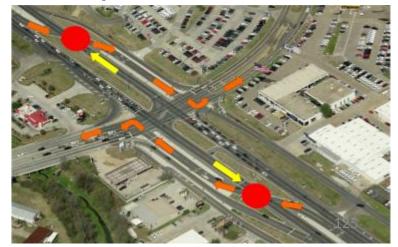
- 1. Dynamic Lane Grouping
- 2. Dynamic Merge Control
- 3. Acceleration Lane Extension
- 4. Hard Shoulder Running
- 5. Lane Narrowing to Add a Lane

6. Alternative Intersections and Interchanges

Alternative Intersection Design

Diverging Diamond Interchange

Restricted Crossing U-Turn



Administration

Median U-Turn

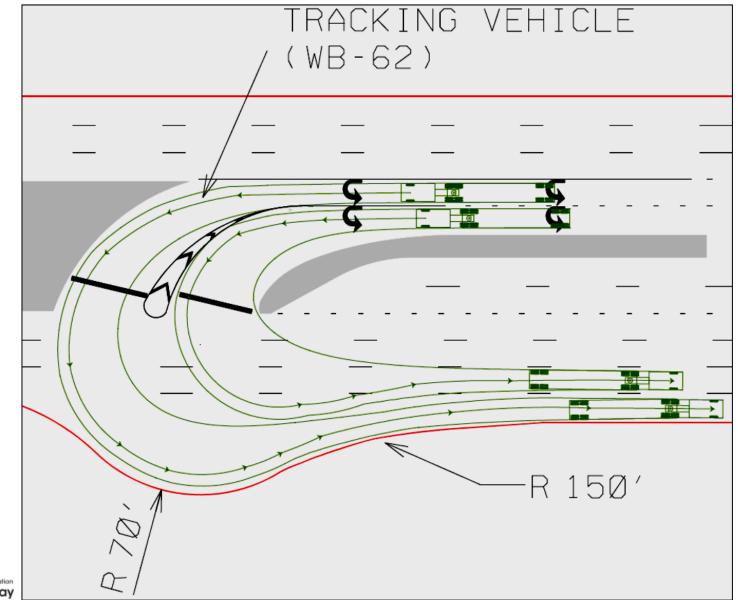
Displaced Left-Turn Lane

Double Crossover Diamond Interchange aka Diverging Diamond Interchange (DDI)

Diverging Diamond Interchange (DDI)

Median U-Turn Intersection (MUT)

20% to 50% increase in throughput

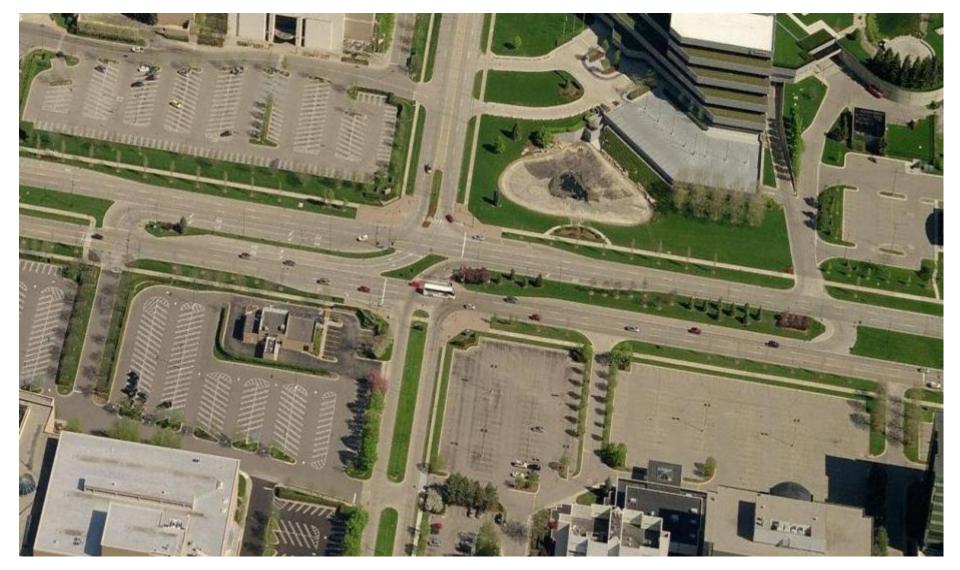


15% to 30% reduction in network travel time

Median U-Turn Intersection (MUT) Wide median is not necessary

Federal Highway Administration

Median U-Turn Intersection (MUT)



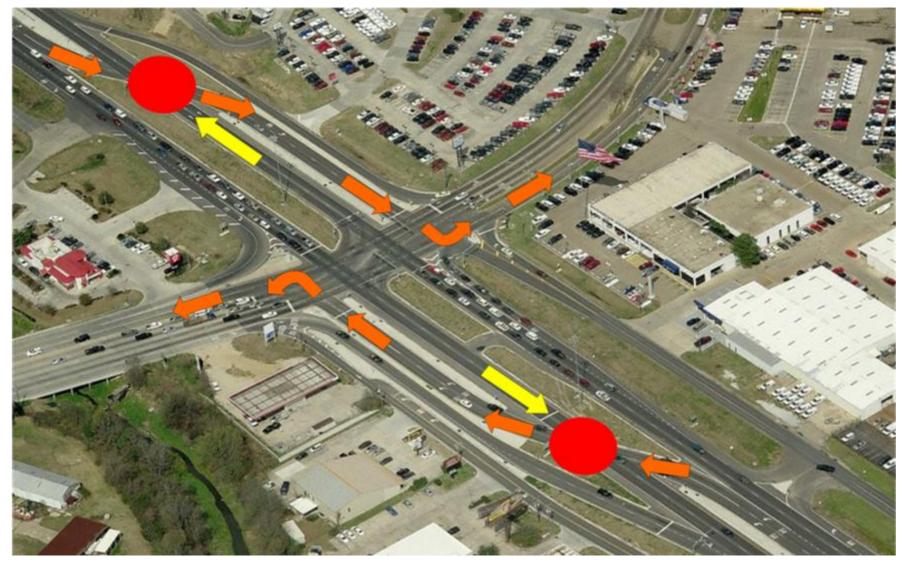
Restricted Crossing U-Turn (RCUT)

RCUT Intersection – Implementations

U.S. Rt. 301 and Del Rhodes Ave Unsignalized RCUT in Maryland

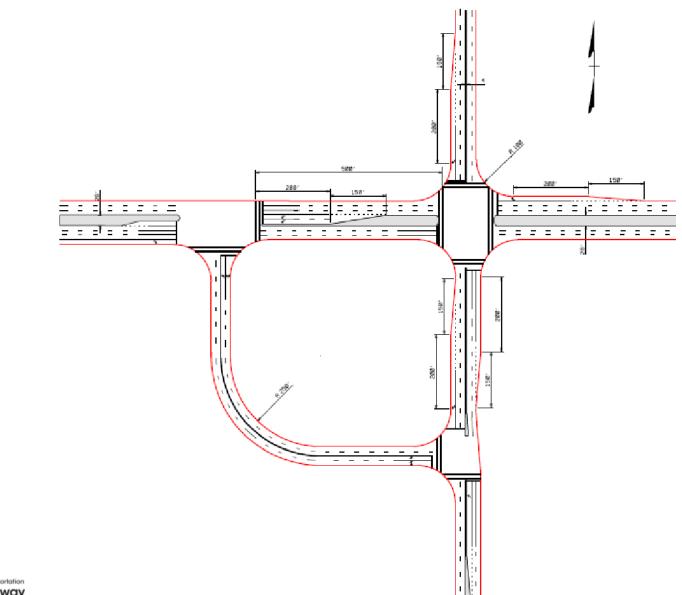
RCUT Intersection – Implementations

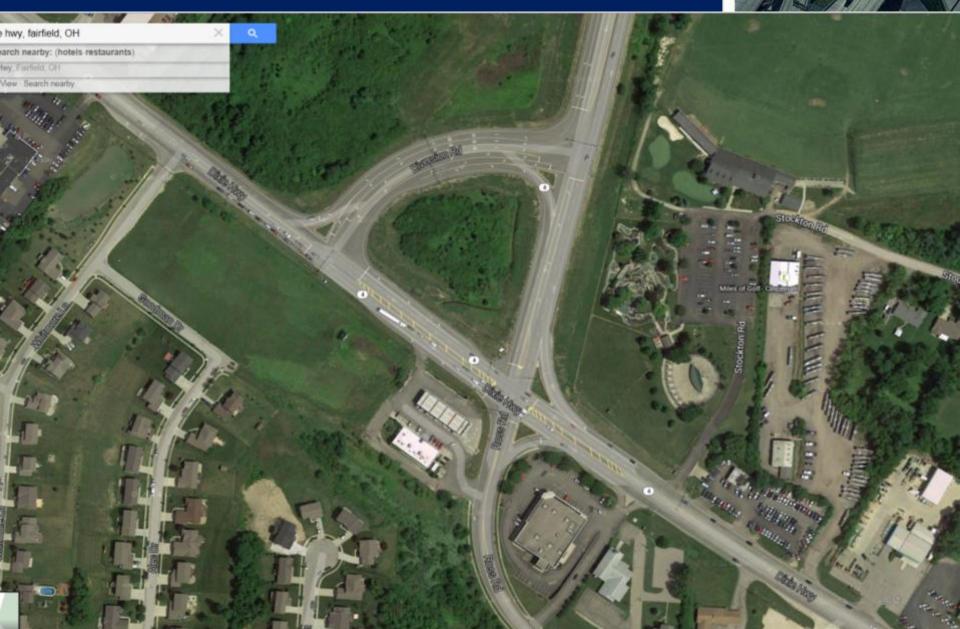
Restricted Crossing U-Turn (RCUT)



Displaced Left-Turn Intersection (DLT) aka Continuous Flow Intersection

DLT Intersection in Utah (without bypass right-merge lane)

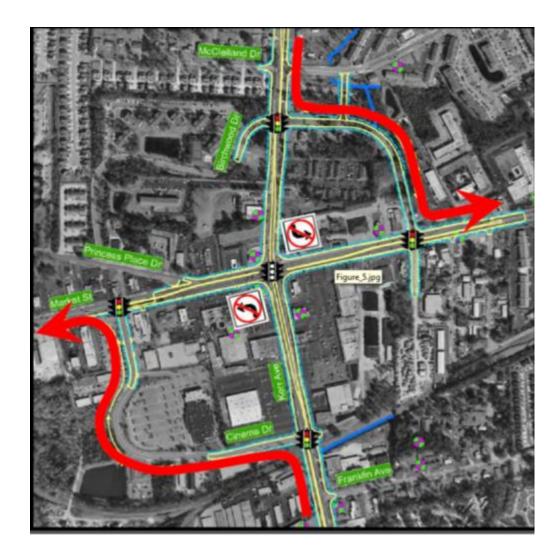

Displaced Left-Turn Intersection (DLT) aka Continuous Flow Intersection



Quadrant Roadway Intersection Design

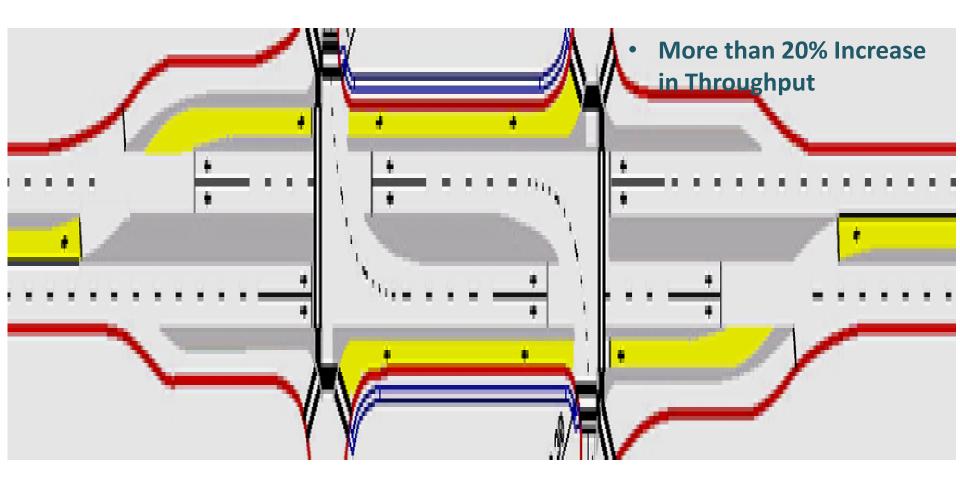
Federal Highway Administration

Fairfield, OH (Google map image)


Quadrant Roadway Intersection

Proposed NC Double Quadrants From Presentation by VHB, Nov. 2013

Quadrant Roadway Intersection



Play video

Displaced Left-Turn Interchange Concept

Displaced Left-Turn Interchange

Play video

DLT Interchange with Peds

Play video

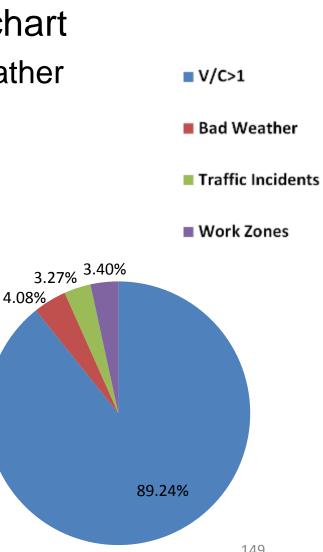
Displaced Left-Turn Interchange First Implementation in San Marcos, TX

https://www.youtube.com/watch?v=ULyjDcEeHG0&feature=youtu.be

Displaced Left-Turn Interchange First

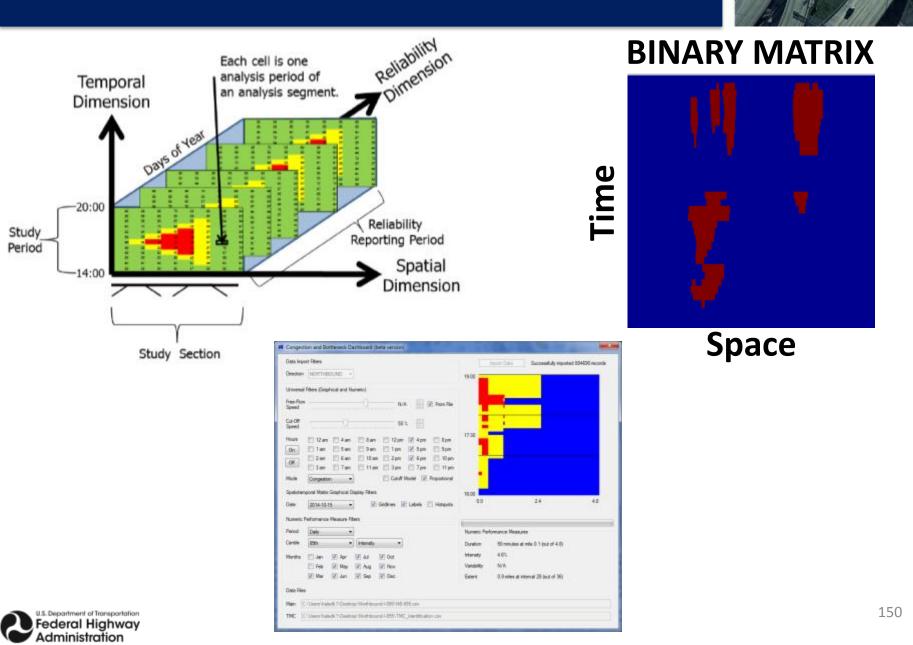
Implementation in San Marcos, TX

- 1. Congestion and bottleneck concepts
- 2. Congestion and bottleneck identification methods
- 3. Modernized causes of congestion pie chart
- 4. Featured bottleneck mitigation strategies


Workshop Summary

- Data-driven congestion causal pie chart
 - Bigger impact: road geometry, bad weather
 - Smaller impact: incidents, work zones
- Coming soon

deral Hiahway


- Surface arterial pie chart
- Analysis of more freeways

Poor Signal Timing (5%) Special Events/Others (5%) Work Zones (10%) Bad Weather (15%) Traffic Incidents (25%) Bottlenecks (40%)

Workshop Summary

Featured Bottleneck Mitigation Strategies

- 1. Dynamic Lane Grouping
- 2. Dynamic Merge Control
- 3. Acceleration Lane Extension
- 4. Hard Shoulder Running
- 5. Lane Narrowing to Add a Lane
- 6. Alternative Intersections and Interchanges

Bottleneck Mitigation Strategies

